題目大意:給出一張無向圖,問添加多少邊才能使得這張無向圖變成邊雙連通分量
解題思路:先求出所有的邊雙連通分量,再将邊雙連通縮成一個點,通過橋連接配接起來,這樣就形成了一棵無根樹了
現在的問題是,将這顆無根樹變成邊雙連通分量
網上的解釋是:統計出樹中度為1的節點的個數,即為葉節點的個數,記為leaf。則至少在樹上添加(leaf+1)/2條邊,就能使樹達到邊二連通,是以至少添加的邊數就是(leaf+1)/2。具體方法為,首先把兩個最近公共祖先最遠的兩個葉節點之間連接配接一條邊,這樣可以把這兩個點到祖先的路徑上所有點收縮到一起,因為一個形成的環一定是雙連通的。然後再找兩個最近公共祖先最遠的兩個葉節點,這樣一對一對找完,恰好是(leaf+1)/2次,把所有點收縮到了一起。
附上大神的詳解
和相關的連通分量的概念
#include <cstdio>
#include <cstring>
#define N 1010
#define min(a,b) ((a)<(b) ?(a):(b))
struct Edge{
int to, next;
}E[N*];
int n, m, tot, dfs_clock, bcc_cnt, top, bnum;;
int head[N], pre[N], belong[N], degree[N], stack[N], bridge[N][];
void Addegreedge(int u, int v) {
E[tot].to = v; E[tot].next = head[u]; head[u] = tot++;
u = u ^ v; v = v ^ u; u = u ^ v;
E[tot].to = v; E[tot].next = head[u]; head[u] = tot++;
}
void init() {
memset(head, -, sizeof(head));
tot = ;
int u, v;
for (int i = ; i < m; i++) {
scanf("%d%d", &u, &v);
Addegreedge(u, v);
}
}
int dfs(int u, int fa) {
int lowu = pre[u] = ++dfs_clock;
stack[++top] = u;
for (int i = head[u]; i != -; i = E[i].next) {
int v = E[i].to;
if (!pre[v]) {
int lowv = dfs(v, u);
lowu = min(lowv, lowu);
if (lowv > pre[u]) {
bridge[bnum][] = u;
bridge[bnum++][] = v;
bcc_cnt++;
while () {
int x = stack[top--];
belong[x] = bcc_cnt;
if (x == v) break;
}
}
}else if (pre[v] < pre[u] && v != fa) {
lowu = min(lowu, pre[v]);
}
}
return lowu;
}
void solve() {
memset(degree, , sizeof(degree));
memset(pre, , sizeof(pre));
dfs_clock = bcc_cnt = top = bnum = ;
dfs(, -);
if (top) {
bcc_cnt++;
while () {
int x = stack[top--];
belong[x] = bcc_cnt;
if (x == )
break;
}
}
for (int i = ; i < bnum; i++) {
int u = bridge[i][];
int v = bridge[i][];
degree[belong[u]]++;
degree[belong[v]]++;
}
int leaf = ;
for (int i = ; i <= bcc_cnt; i++)
if (degree[i] == )
leaf++;
printf("%d\n", (leaf + )/ );
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
init();
solve();
}
return ;
}