題意
找到\(\ n^2\)個點,滿足0 \(\leq\) x,y < 2n且兩點間距離d \(\not\) = \(\sqrt{x1}\) 或 \(\sqrt{x2}\)
題解
設 \(\ a^2\) + \(\ b^2\) = d
若\(\ d\equiv0\)\(\pmod{2}\),a和b必定一奇一偶,按國際象棋染色即可
若\(\ d\equiv1\)\(\pmod{2}\),a和b必定均為奇數,一行白,一行黑染色即可
若\(\ d\equiv0\)\(\pmod{4}\),将2*2的區域看成一個大格子,d疊代為d/4 進行如上考慮即可
調試記錄
% 的優先級高于 + 要加括号
#include <cstdio>
using namespace std;
int n, d1, d2, a[605][605];
void paint(int d){
int times = 0;
while (d % 4 == 0) d /= 4, times++;
if (d % 2 == 1){
for (int i = 0; i < 2 * n; i++)
for (int j = 0; j < 2 * n; j++)
if (((i >> times) + (j >> times)) % 2 == 1) a[i][j] = 1;
}
if (d % 2 == 0){
for (int i = 0; i < 2 * n; i++){
if ((i >> times) % 2 == 1)
for (int j = 0; j < 2 * n; j++) a[i][j] = 1;
}
}
}
int main(){
scanf("%d%d%d", &n, &d1, &d2);
int cnt = 0;
paint(d1); paint(d2);
for (int i = 0; i < 2 * n; i++){
for (int j = 0; j < 2 * n; j++){
if (cnt < n * n && !a[i][j]){
printf("%d %d\n", i, j);
cnt++;
}
}
}
return 0;
}