SIFT特征具有縮放、旋轉特征不變性,下載下傳了大牛的matlab版SIFT特征提取代碼,解釋如下:
1.調用方法:
将檔案加入matlab目錄後,在主程式中有兩種操作:
op1:尋找圖像中的Sift特征:
[image, descrips, locs] = sift('scene.pgm');
showkeys(image, locs);
op2:對兩幅圖中的SIFT特征進行比對:
match('scene.pgm','book.pgm');
由于scene和book兩圖中有相同的一本書,但orientation和size都不同,可以發現所得結果中Sift特征檢測結果非常好。
2.代碼下載下傳位址:
http://www.cs.ubc.ca/~lowe/keypoints/
3.想用自己的圖檔進行調用:
i1=imread('D:\Images\New\Cars\image_0001.jpg');
i2=imread('D:\Images\New\Cars\image_0076.jpg');
i11=rgb2gray(i1);
i22=rgb2gray(i2);
imwrite(i11,'v1.jpg','quality',80);
imwrite(i22,'v2.jpg','quality',80);
match('v1.jpg','v2.jpg');
experiment results:
SIFT特征提取-應用篇
scene
book
compare result
EXP2:
C代碼:
// FeatureDetector.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include "highgui.h"
#include "cv.h"
#include "vector"
#include "opencv\cxcore.hpp"
#include "iostream"
#include "opencv.hpp"
#include "nonfree.hpp"
#include "showhelper.h"
using namespace cv;
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
//Load Image
Mat c_src1 = imread( "..\\Images\\3.jpg");
Mat c_src2 = imread("..\\Images\\4.jpg");
Mat src1 = imread( "..\\Images\\3.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat src2 = imread( "..\\Images\\4.jpg", CV_LOAD_IMAGE_GRAYSCALE);
if( !src1.data || !src2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//sift feature detect
SiftFeatureDetector detector;
std::vector<KeyPoint> kp1, kp2;
detector.detect( src1, kp1 );
detector.detect( src2, kp2 );
SiftDescriptorExtractor extractor;
Mat des1,des2;//descriptor
extractor.compute(src1,kp1,des1);
extractor.compute(src2,kp2,des2);
Mat res1,res2;
int drawmode = DrawMatchesFlags::DRAW_RICH_KEYPOINTS;
drawKeypoints(c_src1,kp1,res1,Scalar::all(-1),drawmode);//在記憶體中畫出特征點
drawKeypoints(c_src2,kp2,res2,Scalar::all(-1),drawmode);
cout<<"size of description of Img1: "<<kp1.size()<<endl;
cout<<"size of description of Img2: "<<kp2.size()<<endl;
BFMatcher matcher(NORM_L2);
vector<DMatch> matches;
matcher.match(des1,des2,matches);
Mat img_match;
drawMatches(src1,kp1,src2,kp2,matches,img_match);//,Scalar::all(-1),Scalar::all(-1),vector<char>(),drawmode);
cout<<"number of matched points: "<<matches.size()<<endl;
imshow("matches",img_match);
cvWaitKey();
cvDestroyAllWindows();
return 0;
}
Python代碼:
http://blog.csdn.net/abcjennifer/article/details/7639681
關于sift的其他講解:
http://blog.csdn.net/abcjennifer/article/details/7639681
http://blog.csdn.net/abcjennifer/article/details/7372880
http://blog.csdn.net/abcjennifer/article/details/7365882
關于computer vision的更多讨論與交流,敬請關注本部落格和新浪微網誌Sophia_qing。