題目連結
題意:給你N,G, 求G^( sigma( C(N, d) ) ) % MOD, d為N的因數 , MOD = 999911659
思路:根據 指數循環節 可知ans = G^( sigma( C(N, d) )%(MOD-1) + MOD-1 ) %MOD
因為MOD-1拆成素數相乘為2*3*4679*35617,根據Lucas定理求出sigma(C(N, d)) % m, m = 2, 3, 4679, 35617,因為模都是互質的素數,然後用中國剩餘定理合并,然後快速幂即可。注意有個trick,G如果等于MOD,那麼直接要輸出0!
#include
typedef long long ll;
const int MOD = 999911659;
int m[4] = {2, 3, 4679, 35617};
int fac[4][36666], a[4], d[11111];
int exgcd(int a, int b, int &x, int &y) {
if(!b) {
x = 1; y = 0;
return a;
}
int ret = exgcd(b, a%b, y, x);
y -= a/b*x;
return ret;
}
int inv(int a, int mod) {
int x, y, d = exgcd(a, mod, x, y);
if(x < 0) x += mod;
return x;
}
int C(int i, int n, int k, int p) {
return fac[i][n]*inv(fac[i][n-k]*fac[i][k]%p, p)%p;
}
int Lucas(int i, int n, int k, int p) {
int ret = 1;
while(n && k) {
ret = ret*C(i, n%p, k%p, p)%p;
if(ret == 0) return 0;
n /= p; k /= p;
}
return ret;
}
int pow_mod(int x, int n, int mod) {
int ret = 1;
while(n) {
if(n&1) ret = (ll)ret*x%mod;
x = (ll)x*x%mod;
n >>= 1;
}
return ret;
}
int China(int n, int a[], int m[]) {
int M = 1;
for(int i = 0;i < n; i++) M *= m[i];
int ret = 0;
for(int i = 0;i < n; i++) {
int w = M/m[i], x, y;
int d = exgcd(w, m[i], x, y);
ret = (ret + (ll)x*w*a[i])%M;
}
return (ret+M)%M;
}
int main() {
int n, g;
scanf("%d%d", &n, &g);
if(g == MOD) return puts("0") , 0;
int tot = 0;
for(int i = 1;i*i <= n; i++) if(n%i == 0) {
if(i*i == n) d[tot++] = i;
else d[tot++] = i, d[tot++] = n/i;
}
for(int i = 0;i < 4; i++) {
fac[i][0] = 1;
for(int j = 1;j <= m[i]; j++)
fac[i][j] = fac[i][j-1]*j%m[i];
}
for(int i = 0;i < tot; i++) {
for(int j = 0;j < 4; j++) {
a[j] += Lucas(j, n, d[i], m[j]);
if(a[j] >= m[j]) a[j] -= m[j];
}
}
int ans = China(4, a, m);
printf("%d\n", pow_mod(g, ans, MOD));
return 0;
}