http://blog.csdn.net/zhazhiqiang/article/details/18664417
http://blog.csdn.net/hujingshuang/article/details/47337707/
http://blog.csdn.net/orsinozhu/article/details/40554211
http://blog.csdn.net/qq_14845119/article/details/52187774
http://blog.csdn.net/leifeng_soul/article/details/52608575
http://blog.csdn.net/zhazhiqiang/article/details/20723425
http://blog.csdn.net/alvine008/article/details/9097105
http://blog.csdn.net/love_linney/article/details/25192909
#ifndef MY_HOG_SVM_H
#define MY_HOG_SVM_H
#include <QObject>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv/cv.h"
#include <QDebug>
#include <QTime>
#include <QDateTime>
#include <QTimer>
#include <QtCore/qmath.h>
#include "opencv/ml.h"
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace cv;
using namespace std;
class Mysvm : public CvSVM
{
public:
//獲得SVM的決策函數中的alpha數組
double * get_alpha_vector()
{
return this->decision_func->alpha;
}
//獲得SVM的決策函數中的rho參數,即偏移量
float get_rho()
{
return this->decision_func->rho;
}
};
class Mysvm;
class My_Hog_Svm : public QObject
{
Q_OBJECT
public:
explicit My_Hog_Svm(QObject *parent = );
private:
const int m_iImgHeight = ;
const int m_iImgWidht =;
const int m_iBlockSizeWidth = ;
const int m_iCellSizeWidth =;
const int m_iStrideSizeWidth =;
private:
void MyTrain();
void Detection();
void GetFeatureVector();
void DrawBox();
};
#endif // MY_HOG_SVM_H
#include "my_hog_svm.h"
//#include "mysvm.h"
My_Hog_Svm::My_Hog_Svm(QObject *parent) : QObject(parent)
{
// //1:訓練
// this->MyTrain();
// //2:檢測
// this->Detection();
// //3:獲得特征向量
// this->GetFeatureVector();
//4:畫框
this->DrawBox();
}
void My_Hog_Svm::MyTrain()
{
vector<string> img_path; //樣本路徑
vector<int> img_catg; //标記正負樣本
int nLine = ; //樣本總共的個數
string buf;
ifstream svm_data_true( "./TRAIN_HEAD/Pos.txt" ); //正樣本路徑
ifstream svm_data_false( "./TRAIN_HEAD/Neg.txt" ); //負樣本路徑
unsigned long n;
//擷取樣本的路徑
while(svm_data_true) //正樣本
{
if( getline( svm_data_true, buf ) )
{
nLine ++;
img_catg.push_back();
img_path.push_back( buf );
}
}
while(svm_data_false) //負樣本
{
if(getline(svm_data_false, buf))
{
nLine ++;
img_catg.push_back();
img_path.push_back( buf );
}
}
svm_data_true.close();//關閉檔案
svm_data_false.close();
Mat data_mat; //存放特征值的矩陣
Mat res_mat; //存放正負樣本的辨別
int nImgNum = nLine; //讀入樣本數量
//類型矩陣,存儲每個樣本的類型标志
res_mat = Mat::zeros( nImgNum, , CV_32FC1);
Mat src;
Mat trainImg = Mat::zeros(m_iImgHeight, m_iImgWidht, CV_8UC3);//需要分析的圖檔
//擷取每一個檔案的特征值矩陣
for( string::size_type i = ; i != img_path.size(); i++ )
{
src = imread(img_path[i].c_str(), );
resize(src, trainImg, cv::Size(m_iImgWidht,m_iImgHeight), , , INTER_CUBIC); //調整訓練的圖檔
HOGDescriptor *hog=new HOGDescriptor(cvSize(m_iImgWidht,m_iImgHeight) //參數:視窗大小,塊的大小,塊滑動增量,cell的大小,每個bin的特征值
,cvSize(m_iBlockSizeWidth,m_iBlockSizeWidth),cvSize(m_iCellSizeWidth,m_iCellSizeWidth),cvSize(m_iStrideSizeWidth,m_iStrideSizeWidth), ); //具體意思見參考文章1,2
vector<float>descriptors;//結果數組,特征值的個數
hog->compute(trainImg, descriptors, Size(m_iStrideSizeWidth,m_iStrideSizeWidth), Size(,)); //調用計算函數開始計算,滑動塊增量
if (i==)
{
//初始化存放所有圖檔特征值的容器
data_mat = Mat::zeros( nImgNum, descriptors.size(), CV_32FC1 ); //根據輸入圖檔大小進行配置設定空間
}
n=;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
//為容器指派
data_mat.at<float>(i,n) = *iter;
n++;
}
res_mat.at<float>(i, ) = img_catg[i];
cout<<" end processing "<<img_path[i].c_str()<<" label:"<<img_catg[i]<<" HOG dims: "<<descriptors.size()<<endl;
}
//svm訓練
Mysvm* svm = new Mysvm();
//訓練SVM分類器
//疊代終止條件,當疊代滿1000次或誤差小于FLT_EPSILON時停止疊代
CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, , FLT_EPSILON);
//SVM參數:SVM類型為C_SVC;線性核函數;松弛因子C=0.01
CvSVMParams param(CvSVM::C_SVC, CvSVM::LINEAR, , , , , , , , criteria);
//☆☆☆☆☆☆☆☆☆(5) SVM學習 ☆☆☆☆☆☆☆☆☆☆☆☆
svm->train( data_mat, res_mat, Mat(), Mat(), param );
//☆☆利用訓練資料和确定的學習參數,進行SVM學習☆☆☆☆
svm->save( "./TRAIN_HEAD/SVM_DATA.xml" );
qDebug() << "Finish!";
}
void My_Hog_Svm::Detection()
{
Mysvm* svm = new Mysvm();
svm->load("./TRAIN_HEAD/SVM_DATA.xml");
Mat trainImg = Mat::zeros(m_iImgHeight, m_iImgWidht, CV_8UC3);//需要分析的圖檔
string buf;
//檢測樣本
vector<string> img_tst_path;
ifstream img_tstNeg( "./TRAIN_HEAD/testNeg.txt" );
ifstream img_tstPos( "./TRAIN_HEAD/testPos.txt" );
while( img_tstNeg )
{
if( getline( img_tstNeg, buf ) )
{
img_tst_path.push_back( buf );
}
}
img_tstNeg.close();
while( img_tstPos )
{
if( getline( img_tstPos, buf ) )
{
img_tst_path.push_back( buf );
}
}
img_tstPos.close();
Mat test;
char line[];
ofstream predict_txt( "./TRAIN_HEAD/SVM_PREDICT.txt" );
for( string::size_type j = ; j != img_tst_path.size(); j++ )
{
test = imread( img_tst_path[j].c_str(), );//讀入圖像
resize(test, trainImg, cv::Size(m_iImgWidht,m_iImgHeight), , , INTER_CUBIC);//要搞成同樣的大小才可以檢測到
HOGDescriptor *hog=new HOGDescriptor(cvSize(m_iImgWidht,m_iImgHeight)
,cvSize(m_iBlockSizeWidth,m_iBlockSizeWidth),cvSize(m_iCellSizeWidth,m_iCellSizeWidth),cvSize(m_iStrideSizeWidth,m_iStrideSizeWidth), );
vector<float>descriptors;//結果數組
hog->compute(trainImg, descriptors,Size(m_iStrideSizeWidth,m_iStrideSizeWidth), Size(,)); //調用計算函數開始計算
cout<<"The Detection Result:"<<endl;
Mat SVMtrainMat = Mat::zeros(,descriptors.size(),CV_32FC1);
int n=;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
SVMtrainMat.at<float>(,n) = *iter;
n++;
}
int ret = svm->predict(SVMtrainMat);
std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
printf("%s %d\r\n", img_tst_path[j].c_str(), ret);
predict_txt<<line;
}
predict_txt.close();
cout << "Finish" <<endl;
return ;
}
/*************************************************************************************************
線性SVM訓練完成後得到的XML檔案裡面,有一個數組,叫做support vector,還有一個數組,叫做alpha,有一個浮點數,叫做rho;
将alpha矩陣同support vector相乘,注意,alpha*supportVector,将得到一個列向量。之後,再該列向量的最後添加一個元素rho。
如此,變得到了一個分類器,利用該分類器,直接替換opencv中行人檢測預設的那個分類器(cv::HOGDescriptor::setSVMDetector()),
就可以利用你的訓練樣本訓練出來的分類器進行行人檢測了。
***************************************************************************************************/
void My_Hog_Svm::GetFeatureVector()
{
Mysvm* svm = new Mysvm();
svm->load("./TRAIN_HEAD/SVM_DATA.xml"); //擷取特征值的個數
int l_iFeatureNum = svm->get_var_count();//特征向量的維數,即HOG描述子的維數
int supportVectorNum = svm->get_support_vector_count();//支援向量的個數
qDebug()<<"支援向量個數:"<<supportVectorNum;
Mat alphaMat = Mat::zeros(, supportVectorNum, CV_32FC1);//alpha向量,長度等于支援向量個數
Mat supportVectorMat = Mat::zeros(supportVectorNum, l_iFeatureNum, CV_32FC1);//支援向量矩陣
Mat resultMat = Mat::zeros(, l_iFeatureNum, CV_32FC1);//alpha向量乘以支援向量矩陣的結果
//将支援向量的資料複制到supportVectorMat矩陣中
for(int i=; i<supportVectorNum; i++)
{
const float * pSVData = svm->get_support_vector(i);//傳回第i個支援向量的資料指針
for(int j=; j<l_iFeatureNum; j++)
{
supportVectorMat.at<float>(i,j) = pSVData[j];
}
}
//将alpha向量的資料複制到alphaMat中
double * pAlphaData = svm->get_alpha_vector();//傳回SVM的決策函數中的alpha向量
for(int i=; i<supportVectorNum; i++)
{
alphaMat.at<float>(,i) = pAlphaData[i];
}
//gemm(alphaMat, supportVectorMat, -1, 0, 1, resultMat);//不知道為什麼加負号?
resultMat = - * alphaMat * supportVectorMat;
//得到最終的setSVMDetector(const vector<float>& detector)參數中可用的檢測子
vector<float> myDetector;
//将resultMat中的資料複制到數組myDetector中
for(int i=; i<l_iFeatureNum; i++)
{
myDetector.push_back(resultMat.at<float>(,i));
}
//最後添加偏移量rho,得到檢測子
// myDetector.push_back(svm->get_rho());
qDebug()<<"檢測子維數:"<<myDetector.size() +;
//儲存檢測子參數到檔案
FILE* fp = fopen("./TRAIN_HEAD/hogSVMDetector-peopleFlow.txt","wb");
if( NULL == fp )
{
return ;
}
for(int i=; i<myDetector.size(); i++)
{
fprintf(fp, "%f \n", myDetector[i]);
}
fprintf(fp, "%f", svm->get_rho());
fclose(fp);
qDebug() << "Finish!";
return;
}
void My_Hog_Svm::DrawBox()
{
vector<Rect> found;
Mat img = imread("./11.jpg");
vector<float> myDetector;
ifstream fileIn("./TRAIN_HEAD/hogSVMDetector-peopleFlow.txt", ios::in);
float val = ;
while(!fileIn.eof())
{
fileIn>>val;
myDetector.push_back(val);
}
fileIn.close();
HOGDescriptor defaultHog(cvSize(m_iImgWidht,m_iImgHeight) //參數:視窗大小,塊的大小,塊滑動增量,cell的大小,每個bin的特征值
,cvSize(m_iBlockSizeWidth,m_iBlockSizeWidth),cvSize(m_iCellSizeWidth,m_iCellSizeWidth),cvSize(m_iStrideSizeWidth,m_iStrideSizeWidth), );
defaultHog.setSVMDetector(myDetector);
//進行檢測
defaultHog.detectMultiScale(img, found);
//畫長方形,框出行人
for(int i = ; i < found.size(); i++)
{
Rect r = found[i];
rectangle(img, r.tl(), r.br(), Scalar(, , ), );
}
namedWindow("檢測行人", CV_WINDOW_AUTOSIZE);
imshow("檢測行人", img);
waitKey();
// Mat l_pImageEle;
// namedWindow("Video");
// VideoCapture capture("./a.avi");
// while(1) //循環每一幀
// {
// static int l_iNum = 0;
// if(!capture.read(l_pImageEle))
// {
// return;
// }
// if(l_iNum%34 ==0)
// {
// //進行檢測
// defaultHog.detectMultiScale(l_pImageEle, found);
// //畫長方形,框出行人
// for(int i = 0; i < found.size(); i++)
// {
// Rect r = found[i];
// rectangle(l_pImageEle, r.tl(), r.br(), Scalar(255, 255, 255), 3);
// }
// }
// imshow("Video", l_pImageEle);
// cvWaitKey(34);
// }
}