強化文法,回顧算法。
通過Go語言實作 深度優先搜尋 和 廣度優先搜尋,來查找社交網絡中的三度好友關系(三度指的是一個節點到 其相鄰節點 到 其相鄰節點的節點 ,圖遞增三層好友關系)。
涉及到的Go語言文法:
- Go的封裝特性
- 空接口和 斷言
- 數組的切片特性
- Go 實作的雙向連結清單庫 – container/list
實作基本的搜尋算法:深搜和廣搜
深度優先搜尋 就是沿着一個方向一直走,如果發現最後的結果是失敗的,回溯到上一步,繼續嘗試其他分支。
廣度優先搜尋 就是層次搜尋,将從目前節點到下一節點所有的步驟都走一遍,并儲存走過的節點;到第三步時從儲存的節點中取一個再走一步,将這一步所有的可達節點也都儲存下來。
package main
import (
"container/list"
"fmt"
)
//adjacency table, 無向圖
type Graph struct {
adj []*list.List // double linklist storage the graph edge
v int // storage node's value
}
//init graphh according to capacity
func newGraph(v int) *Graph {
graphh := &Graph{}
graphh.v = v
graphh.adj = make([]*list.List, v)
for i := range graphh.adj {
graphh.adj[i] = list.New()
}
return graphh
}
//insert as add edge,使用鄰接表建構無向圖
func (self *Graph) addEdge(s int, t int) {
self.adj[s].PushBack(t)
self.adj[t].PushBack(s)
}
// Find the path by bfs
func (g *Graph)bfs(s int, n int) {
if s == n {
return
}
visited := make([]bool, g.v)
visited[s] = true
prev := make([]int, g.v)
for index := range prev{
prev[index] = -1
}
var queue []int
queue = append(queue,s)
visited[s] = true
found := false
for len(queue) > 0 && !found {
top := queue[0]
queue = queue[1:] // 去掉頭隊頭元素
graphlink := g.adj[top]
for edge := graphlink.Front(); edge != nil; edge = edge.Next() {
k,ok := edge.Value.(int) // turn the nil interface to int 即空接口通過斷言轉為int
if ok {
if !visited[k] {
prev[k] = top
if k == n{
found = true
break
}
queue = append(queue,k)
visited[k] = true
}
}
}
}
if found {
printPath(prev,s,n)
} else {
fmt.Printf("no path found from %d to %d\n",s,n )
}
}
//search by DFS
func (self *Graph) DFS(s int, t int) {
prev := make([]int, self.v)
for i := range prev {
prev[i] = -1
}
visited := make([]bool, self.v)
visited[s] = true
isFound := false
self.recurse(s, t, prev, visited, isFound)
printPath(prev, s, t)
fmt.Println()
}
//recurse find path
func (self *Graph) recurse(s int, t int, prev []int, visited []bool, isFound bool) {
if isFound {
return
}
visited[s] = true
if s == t {
isFound = true
return
}
linkedlist := self.adj[s]
for e := linkedlist.Front(); e != nil; e = e.Next() {
k := e.Value.(int) // turn the nil interface to int
if !visited[k] {
prev[k] = s
self.recurse(k, t, prev, visited, false)
}
}
}
// print path recurse , to keep the visit sequence
func printPath(path []int ,s int ,n int) {
if path[n] != -1 && n != s {
printPath(path ,s, path[n])
}
fmt.Printf("%d ", n)
}
func main() {
graph := newGraph(8)
graph.addEdge(0, 1)
graph.addEdge(0, 3)
graph.addEdge(1, 2)
graph.addEdge(1, 4)
graph.addEdge(2, 5)
graph.addEdge(3, 4)
graph.addEdge(4, 5)
graph.addEdge(4, 6)
graph.addEdge(5, 7)
graph.addEdge(6, 7)
fmt.Println("BFS find 0-7: ")
graph.bfs(0, 7)
fmt.Println("BFS find 1-3: ")
graph.bfs(1, 3)
fmt.Println("DFS find 0-7: ")
graph.DFS(0, 7)
fmt.Println("DFS find 1-3: ")
graph.DFS(1, 3)
fmt.Println()
}
BFS find 0-7:
0 1 2 5 7 BFS find 1-3:
1 0 3
DFS find 0-7:
0 1 2 5 4 6 7
DFS find 1-3:
1 0 3