線性可分支援向量機與硬間隔最大化
線性可分支援向量機
-
定義:給定線性可分訓練資料集,通過間隔最大化或等價地求解相應的凸二次規劃問題學習得到的分離超平面為
w ∗ ⋅ x + b ∗ = 0 w^* \cdot x +b^*=0 w∗⋅x+b∗=0
以及相應的分類決策函數
f ( x ) = s i g n ( w ∗ ⋅ x + b ∗ ) f(x)=sign(w^* \cdot x +b^*) f(x)=sign(w∗⋅x+b∗)
稱為線性可分支援向量機.
函數間隔和幾何間隔
-
函數間隔定義:對于給定的訓練資料集T和超平面 ( w , b ) (w,b) (w,b)定義超平面 ( w , b ) (w,b) (w,b)關于樣本點 ( x i , y i ) (x_i,y_i) (xi,yi)的函數間隔為
γ ^ i = y i ( w ⋅ x i + b ) \hat{\gamma}_i=y_i(w \cdot x_i+b) γ^i=yi(w⋅xi+b)
定義超平面 ( w , b ) (w,b) (w,b)關于訓練資料集 T T T的函數間隔為超平面 ( w , b ) (w,b) (w,b)關于 T T T中所有樣本點 ( x i , y i ) (x_i,y_i) (xi,yi)的函數間隔最小值
γ ^ = min i = 1 , . . . , N γ ^ i \hat{\gamma}=\min\limits_{i=1,...,N}\hat{\gamma}_i γ^=i=1,...,Nminγ^i
-
幾何間隔定義:對于給定的訓練資料集 T T T和超平面 ( w , b ) (w,b) (w,b),定義超平面 ( w , b ) (w,b) (w,b)關于樣本點 ( x i , y i ) (x_i,y_i) (xi,yi)的幾何間隔為
γ i = y i ( w ∣ ∣ w ∣ ∣ ⋅ x i + b ∣ ∣ w ∣ ∣ ) \gamma_i=y_i(\frac{w}{||w||}\cdot x_i+\frac{b}{||w||}) γi=yi(∣∣w∣∣w⋅xi+∣∣w∣∣b)
定義超平面 ( w , b ) (w,b) (w,b)關于訓練資料集 T T T的幾何間隔為超平面 ( w , b ) (w,b) (w,b)關于 T T T中所有樣本點 ( x i , y i ) (x_i,y_i) (xi,yi)的幾何間隔最小
γ = min i = 1 , . . . , N γ i {\gamma}=\min\limits_{i=1,...,N}{\gamma}_i γ=i=1,...,Nminγi
于是我們有
γ i = γ i ^ ∣ ∣ w ∣ ∣ {\gamma}_i=\frac{\hat{\gamma_i}}{||w||} γi=∣∣w∣∣γi^
γ = γ ^ ∣ ∣ w ∣ ∣ {\gamma}=\frac{\hat{\gamma}}{||w||} γ=∣∣w∣∣γ^
間隔最大化
最大間隔超平面為
max w , b γ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \max\limits_{w,b} \ \gamma w,bmax γ
s . t . y i ( w ∣ ∣ w ∣ ∣ + b ∣ ∣ w ∣ ∣ ) ≥ γ , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i(\frac{w}{||w||}+\frac{b}{||w||})\ge \gamma, i=1,2,...,N s.t. yi(∣∣w∣∣w+∣∣w∣∣b)≥γ,i=1,2,...,N
等價于
max w , b γ ^ ∣ ∣ w ∣ ∣ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \max\limits_{w,b} \ \frac{\hat{\gamma}}{||w||} w,bmax ∣∣w∣∣γ^
s . t . y i ( w + b ) ≥ γ ^ , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i({w}+{b})\ge \hat{\gamma}, i=1,2,...,N s.t. yi(w+b)≥γ^,i=1,2,...,N
因為 γ ^ \hat{\gamma} γ^取值無所謂,我們取 γ ^ = 1 \hat{\gamma}=1 γ^=1
則最終等價于
min w , b 1 2 ∣ ∣ w ∣ ∣ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_{w,b} \ \frac{1}{2}||w||^2 w,bmin 21∣∣w∣∣2
s . t . y i ( w + b ) − 1 ≥ 0 , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i({w}+{b})-1 \ge0, i=1,2,...,N s.t. yi(w+b)−1≥0,i=1,2,...,N
這是一個凸優化問題
最終算法
輸入:線性可分訓練資料集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)}其中 x i ∈ R n , y i ∈ { − 1 , + 1 } , i = 1 , 2 , . . . , N x_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,N xi∈Rn,yi∈{−1,+1},i=1,2,...,N
輸出:最大間隔分離超平面和分類函數
( 1 ) (1) (1)構造優化問題
min w , b 1 2 ∣ ∣ w ∣ ∣ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_{w,b} \ \frac{1}{2}||w||^2 w,bmin 21∣∣w∣∣2
s . t . y i ( w + b ) − 1 ≥ 0 , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ \ y_i({w}+{b})-1 \ge0, i=1,2,...,N s.t. yi(w+b)−1≥0,i=1,2,...,N
( 2 ) (2) (2)得到分類超平面
w ∗ ⋅ x + b ∗ = 0 w^* \cdot x+b^*=0 w∗⋅x+b∗=0
以及分類決策函數
f ( x ) = s i g n ( w ∗ ⋅ x + b ∗ ) f(x)=sign(w^* \cdot x+b^*) f(x)=sign(w∗⋅x+b∗)
-
最大間隔分離超平面存在且唯一性證明:
( 1 ) (1) (1)存在性
由于資料線性可分,必然存在可行解,又由于目标函數有下界,是以最優解必然存在,記 ( w ∗ , b ∗ ) (w^*,b^*) (w∗,b∗)又因為資料中存在正負樣本,是以 w ∗ ≠ 0 w^* \ne 0 w∗=0,存在性得證
( 2 ) (2) (2)唯一性
首先證明 w ∗ w^* w∗唯一.假設有兩個最優解 ( w 1 ∗ , b 1 ∗ ) (w_1^*,b_1^*) (w1∗,b1∗)和 ( w 2 ∗ , b 2 ∗ ) (w_2^*,b_2^*) (w2∗,b2∗)顯然 ∣ ∣ w 1 ∗ ∣ ∣ = ∣ ∣ w 2 ∗ ∣ ∣ = c ||w_1^*||=||w_2^*||=c ∣∣w1∗∣∣=∣∣w2∗∣∣=c
令 w = w 1 ∗ + w 2 ∗ 2 , b = b 1 ∗ + b 2 ∗ 2 w=\frac{w_1^*+w_2^*}{2},b=\frac{b_1^*+b_2^*}{2} w=2w1∗+w2∗,b=2b1∗+b2∗,則 c ≤ ∣ ∣ w ∣ ∣ ≤ 1 2 ∣ ∣ w 1 ∗ ∣ ∣ + 1 2 ∣ ∣ w 2 ∗ ∣ ∣ = c , c\le||w||\le\frac{1}{2}||w_1^*||+\frac{1}{2}||w_2^*||=c, c≤∣∣w∣∣≤21∣∣w1∗∣∣+21∣∣w2∗∣∣=c,是以 ∣ ∣ w ∣ ∣ = 1 2 ∣ ∣ w 1 ∗ ∣ ∣ + 1 2 ∣ ∣ w 2 ∗ ∣ ∣ ||w||=\frac{1}{2}||w_1^*||+\frac{1}{2}||w_2^*|| ∣∣w∣∣=21∣∣w1∗∣∣+21∣∣w2∗∣∣
進而 ∣ ∣ w 1 ∗ ∣ ∣ = λ ∣ ∣ w 2 ∗ ∣ ∣ ||w_1^*||=\lambda||w_2^*|| ∣∣w1∗∣∣=λ∣∣w2∗∣∣, ∣ λ ∣ = 1 |\lambda|=1 ∣λ∣=1如果 λ = − 1 \lambda=-1 λ=−1,則 ∣ ∣ w ∣ ∣ = 0 ||w||=0 ∣∣w∣∣=0沖突,如果 λ = 1 \lambda=1 λ=1,則 ∣ ∣ w 1 ∗ ∣ ∣ = ∣ ∣ w 2 ∗ ∣ ∣ ||w_1^*||=||w_2^*|| ∣∣w1∗∣∣=∣∣w2∗∣∣沖突,是以 w ∗ w^* w∗唯一
再證 b ∗ b^* b∗
設 x 1 ‘ , x 2 ‘ x_1^`,x_2^` x1‘,x2‘為集合 { x i ∣ y i = + 1 } \{x_i|y_i=+1\} {xi∣yi=+1}中分别對應 ( w ∗ , b 1 ∗ ) (w^*,b_1^*) (w∗,b1∗)和 ( w ∗ , b 2 ∗ ) (w^*,b_2^*) (w∗,b2∗)成立的點
設 x 1 ‘ ‘ , x 2 ‘ ‘ x_1^{``},x_2^{``} x1‘‘,x2‘‘為集合 { x i ∣ y i = − 1 } \{x_i|y_i=-1\} {xi∣yi=−1}中分别對應 ( w ∗ , b 1 ∗ ) (w^*,b_1^*) (w∗,b1∗)和 ( w ∗ , b 2 ∗ ) (w^*,b_2^*) (w∗,b2∗)成立的點
則 b 1 ∗ = − 1 2 ( w ∗ ⋅ x 1 ′ + w ∗ ⋅ x 1 ′ ′ ) , b 2 ∗ = − 1 2 ( w ∗ ⋅ x 2 ′ + w ∗ ⋅ x 2 ′ ′ ) b_1^*=-\frac{1}{2}(w^* \cdot x_1^{'}+w^* \cdot x_1^{''}),b_2^*=-\frac{1}{2}(w^* \cdot x_2^{'}+w^* \cdot x_2^{''}) b1∗=−21(w∗⋅x1′+w∗⋅x1′′),b2∗=−21(w∗⋅x2′+w∗⋅x2′′)
b 1 ∗ − b 2 ∗ = − 1 2 [ w ∗ ⋅ ( x 1 ′ − x 2 ′ ) + w ∗ ⋅ ( x 1 ′ ′ − x 2 ′ ′ ) ] b_1^*-b_2^*=-\frac{1}{2}[w^*\cdot (x_1^{'}-x_2^{'})+w^*\cdot (x_1^{''}-x_2^{''})] b1∗−b2∗=−21[w∗⋅(x1′−x2′)+w∗⋅(x1′′−x2′′)]
又
w ∗ ⋅ x 2 ′ + b 1 ∗ ≥ 1 = w ∗ ⋅ x 1 ′ + b 1 ∗ w^* \cdot x_2^{'}+b_1^* \ge 1=w^* \cdot x_1^{'}+b_1^* w∗⋅x2′+b1∗≥1=w∗⋅x1′+b1∗
w ∗ ⋅ x 1 ′ + b 1 ∗ ≥ 1 = w ∗ ⋅ x 2 ′ + b 2 ∗ w^* \cdot x_1^{'}+b_1^* \ge 1=w^* \cdot x_2^{'}+b_2^* w∗⋅x1′+b1∗≥1=w∗⋅x2′+b2∗
是以 w ∗ ⋅ ( x 1 ′ − x 2 ′ ) = 0 w^* \cdot(x_1^{'}-x_2^{'})=0 w∗⋅(x1′−x2′)=0,同理 w ∗ ⋅ ( x 1 ′ ‘ − x 2 ′ ’ ) = 0 w^* \cdot(x_1^{'‘}-x_2^{'’})=0 w∗⋅(x1′‘−x2′’)=0
是以 b 1 ∗ = b 2 ∗ b_1^*=b_2^* b1∗=b2∗成立.
-
支援向量和間隔邊界
滿足 w ⋅ x i + b = y i w \cdot x_i+b=y_i w⋅xi+b=yi的點稱為支援向量
H 1 : w ⋅ x i + b = + 1 H_1:w \cdot x_i+b=+1 H1:w⋅xi+b=+1
H 2 : w ⋅ x i + b = − 1 H_2:w \cdot x_i+b=-1 H2:w⋅xi+b=−1
則 H 1 和 H 2 H_1和H_2 H1和H2之間的寬度為 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2為間隔邊界
學習的對偶算法
對優化問題求解,首先定義拉格朗日函數
L ( w , b , a ) = 1 2 ∣ ∣ w ∣ ∣ 2 − ∑ i = 1 N a i y i ( w ⋅ x i + b ) + ∑ i = 1 N a i , L(w,b,a)=\frac{1}{2}||w||^2-\sum\limits_{i=1}^Na_iy_i(w \cdot x_i+b)+\sum\limits_{i=1}^Na_i, L(w,b,a)=21∣∣w∣∣2−i=1∑Naiyi(w⋅xi+b)+i=1∑Nai,其中 a i ≥ 0 , i = 1 , 2 , . . . , N a_i \ge0,i=1,2,...,N ai≥0,i=1,2,...,N
定義 a = ( a 1 , a 2 , . . . , a N ) T a=(a_1,a_2,...,a_N)^T a=(a1,a2,...,aN)T
則原問題等價于
max a min w , b L ( w , b , a ) \max\limits_a\min\limits_{w,b}L(w,b,a) amaxw,bminL(w,b,a)
( 1 ) (1) (1)求 min w , b L ( w , b , a ) \min\limits_{w,b}L(w,b,a) w,bminL(w,b,a)另 w , b w,b w,b偏導數等于0
∇ w L ( w , b , a ) = w − ∑ i = 1 N a i y i x i = 0 \nabla_wL(w,b,a)=w-\sum\limits_{i=1}^Na_iy_ix_i=0 ∇wL(w,b,a)=w−i=1∑Naiyixi=0
∇ b L ( w , b , a ) = − ∑ i = 1 N a i y i = 0 \nabla_bL(w,b,a)=-\sum\limits_{i=1}^Na_iy_i=0 ∇bL(w,b,a)=−i=1∑Naiyi=0
得
w = ∑ i = 1 N a i y i x i w=\sum\limits_{i=1}^Na_iy_ix_i w=i=1∑Naiyixi
∑ i = 1 N a i y i = 0 \sum\limits_{i=1}^Na_iy_i=0 i=1∑Naiyi=0
代入得
L ( w , b , a ) = 1 2 ∑ i = 1 N ∑ j = 1 N a i a j y i y j ( x i ⋅ x j ) − ∑ i = 1 N a i y i ( ( ∑ j = 1 N a j y j x j ) ⋅ x i + b + ∑ i = 1 N a i ) L(w,b,a)=\frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_iy_i\Bigg((\sum\limits_{j=1}^Na_jy_jx_j)\cdot x_i +b+\sum\limits_{i=1}^Na_i\Bigg) L(w,b,a)=21i=1∑Nj=1∑Naiajyiyj(xi⋅xj)−i=1∑Naiyi((j=1∑Najyjxj)⋅xi+b+i=1∑Nai)
= − 1 2 ∑ i = 1 N ∑ j = 1 N a i a j y i y j ( x i ⋅ x j ) + ∑ i = 1 N a i =-\frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)+\sum\limits_{i=1}^Na_i =−21i=1∑Nj=1∑Naiajyiyj(xi⋅xj)+i=1∑Nai
( 2 ) (2) (2)
min a 1 2 ∑ i = 1 N ∑ j = 1 N a i a j y i y j ( x i ⋅ x j ) − ∑ i = 1 N a i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i amin 21i=1∑Nj=1∑Naiajyiyj(xi⋅xj)−i=1∑Nai
s . t . ∑ i = 1 N a i y i = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0 s.t. i=1∑Naiyi=0
a i ≥ 0 , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_i\ge 0,i=1,2,...,N ai≥0,i=1,2,...,N
w ∗ = ∑ i = 1 N a i ∗ y i x i w^*=\sum\limits_{i=1}^Na_i^*y_ix_i w∗=i=1∑Nai∗yixi
b ∗ = y i − ∑ i = 1 N a i ∗ y i ( x i ⋅ x j ) , a i > 0 b^*=y_i-\sum\limits_{i=1}^Na_i^*y_i(x_i \cdot x_j),a_i>0 b∗=yi−i=1∑Nai∗yi(xi⋅xj),ai>0
f ( x ) = s i g n ( ∑ i = 1 N a i ∗ y i ( x ⋅ x i ) + b ∗ ) f(x)=sign(\sum\limits_{i=1}^Na_i^*y_i(x \cdot x_i)+b^*) f(x)=sign(i=1∑Nai∗yi(x⋅xi)+b∗)
算法
輸入:線性可分訓練集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i ∈ R n , y i ∈ { − 1 , + 1 } , i = 1 , 2 , . . . , N x_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,N xi∈Rn,yi∈{−1,+1},i=1,2,...,N
輸出:分離超平面和分類決策函數
( 1 ) (1) (1)
min a 1 2 ∑ i = 1 N ∑ j = 1 N a i a j y i y j ( x i ⋅ x j ) − ∑ i = 1 N a i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i amin 21i=1∑Nj=1∑Naiajyiyj(xi⋅xj)−i=1∑Nai
s . t . ∑ i = 1 N a i y i = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0 s.t. i=1∑Naiyi=0
a i ≥ 0 , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_i\ge 0,i=1,2,...,N ai≥0,i=1,2,...,N
求解 a ∗ a^* a∗
( 2 ) (2) (2)計算
w ∗ = ∑ i = 1 N a i ∗ y i x i w^*=\sum\limits_{i=1}^Na_i^*y_ix_i w∗=i=1∑Nai∗yixi
b ∗ = y j − ∑ i = 1 N a i ∗ y i ( x i ⋅ x j ) , a j > 0 b^*=y_j-\sum\limits_{i=1}^Na_i^*y_i(x_i \cdot x_j),a_j>0 b∗=yj−i=1∑Nai∗yi(xi⋅xj),aj>0
( 3 ) (3) (3)求得分類超平面
f ( x ) = s i g n ( ∑ i = 1 N a i ∗ y i ( x ⋅ x i ) + b ∗ ) f(x)=sign(\sum\limits_{i=1}^Na_i^*y_i(x \cdot x_i)+b^*) f(x)=sign(i=1∑Nai∗yi(x⋅xi)+b∗)
線性支援向量機與軟間隔最大化
線性支援向量機
-
定義 給定線性不可分的訓練資料集,通過求解凸二次規劃問題,即軟間隔最大化,得到分離超平面為
w ∗ ⋅ x + b ∗ = 0 w^* \cdot x+b^*=0 w∗⋅x+b∗=0
以及決策分類函數
f ( x ) = s i g n ( w ∗ ⋅ x + b ∗ ) f(x)=sign(w^* \cdot x+b^*) f(x)=sign(w∗⋅x+b∗)
稱為線性支援向量機,
即
改變限制條件為
y i ( w ⋅ x i + b ) ≥ 1 − ξ i , ξ i ≥ 0 y_i(w \cdot x_i+b)\ge 1-\xi_i,\xi_i\ge0 yi(w⋅xi+b)≥1−ξi,ξi≥0
目标函數為
1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i , C > 0 \frac{1}{2}||w||^2+C\sum\limits_{i=1}^N\xi_i,C>0 21∣∣w∣∣2+Ci=1∑Nξi,C>0
最終為
min w , b 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i \min\limits_{w,b} \ \ \ \frac{1}{2}||w||^2+C\sum\limits_{i=1}^N\xi_i\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ w,bmin 21∣∣w∣∣2+Ci=1∑Nξi
s . t . y i ( w + b ) ≥ 1 − ξ i , i = 1 , 2 , . . . , N s.t. \ \ \ \ y_i({w}+{b}) \ge1-\xi_i, i=1,2,...,N s.t. yi(w+b)≥1−ξi,i=1,2,...,N
學習的對偶算法
根據對偶原理
L ( w , b , ξ , a , μ ) = 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i − ∑ i = 1 N a i ( y i ( w ⋅ x i + b ) − 1 + ξ i ) − ∑ i = 1 N μ i ξ i , ξ i ≥ 0 , μ i ≥ 0 L(w,b,\xi,a,\mu)=\frac{1}{2}||w||^2+C\sum\limits_{i=1}^N\xi_i-\sum\limits_{i=1}^Na_i(y_i(w \cdot x_i+b)-1+\xi_i)-\sum_{i=1}^N\mu_i\xi_i,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \xi_i \ge0,\mu_i\ge0 L(w,b,ξ,a,μ)=21∣∣w∣∣2+Ci=1∑Nξi−i=1∑Nai(yi(w⋅xi+b)−1+ξi)−i=1∑Nμiξi, ξi≥0,μi≥0
∇ w L ( w , b , ξ , a , μ ) = w − ∑ i = 1 N a i y i x i = 0 \nabla_wL(w,b,\xi,a,\mu)=w-\sum\limits_{i=1}^Na_iy_ix_i=0 ∇wL(w,b,ξ,a,μ)=w−i=1∑Naiyixi=0
∇ b L ( w , b , ξ , a , μ ) = − ∑ i = 1 N a i y i = 0 \nabla_bL(w,b,\xi,a,\mu)=-\sum\limits_{i=1}^Na_iy_i=0 ∇bL(w,b,ξ,a,μ)=−i=1∑Naiyi=0
∇ ξ i L ( w , b , ξ , a , μ ) = C − a i − μ i = 0 \nabla_{\xi_i}L(w,b,\xi,a,\mu)=C-a_i-\mu_i=0 ∇ξiL(w,b,ξ,a,μ)=C−ai−μi=0
代入原式中得
min w , b 1 2 ∑ i = 1 N ∑ j = 1 N a i a j y i y j ( x i ⋅ x j ) − ∑ i = 1 N a i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_{w,b} \ \ \ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i \ \ \ \ \ w,bmin 21i=1∑Nj=1∑Naiajyiyj(xi⋅xj)−i=1∑Nai
s . t . ∑ i = 1 N a i y i = 0 s.t. \ \ \ \ \ \ \ \ \ \ \ \ \sum\limits_{i=1}^Na_iy_i=0 s.t. i=1∑Naiyi=0
0 ≤ a i ≤ C , i = 1 , 2 , . . . , N \ \ \ \ \ \ 0\le a_i\le C,i=1,2,...,N 0≤ai≤C,i=1,2,...,N
其中
w ∗ = ∑ i = 1 N a i ∗ y i x i w^*=\sum\limits_{i=1}^Na_i^*y_ix_i w∗=i=1∑Nai∗yixi
b ∗ = y j − ∑ i = 1 N y i a i ∗ ( x i ⋅ x j ) , 0 < a j ∗ < C b^*=y_j-\sum\limits_{i=1}^Ny_ia_i^*(x_i \cdot x_j),0<a_j^*<C b∗=yj−i=1∑Nyiai∗(xi⋅xj),0<aj∗<C
算法:
輸入:線性可分訓練集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i ∈ R n , y i ∈ { − 1 , + 1 } , i = 1 , 2 , . . . , N x_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,N xi∈Rn,yi∈{−1,+1},i=1,2,...,N
輸出:分離超平面和分類決策函數
( 1 ) (1) (1)
min a 1 2 ∑ i = 1 N ∑ j = 1 N a i a j y i y j ( x i ⋅ x j ) − ∑ i = 1 N a i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_j(x_i \cdot x_j)-\sum\limits_{i=1}^Na_i amin 21i=1∑Nj=1∑Naiajyiyj(xi⋅xj)−i=1∑Nai
s . t . ∑ i = 1 N a i y i = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0 s.t. i=1∑Naiyi=0
0 ≤ a i ≤ C , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \le a_i\le C,i=1,2,...,N 0≤ai≤C,i=1,2,...,N
求解 a ∗ a^* a∗
( 2 ) (2) (2)計算
w ∗ = ∑ i = 1 N a i ∗ y i x i w^*=\sum\limits_{i=1}^Na_i^*y_ix_i w∗=i=1∑Nai∗yixi
b ∗ = y j − ∑ i = 1 N a i ∗ y i ( x i ⋅ x j ) , a j > 0 b^*=y_j-\sum\limits_{i=1}^Na_i^*y_i(x_i \cdot x_j),a_j>0 b∗=yj−i=1∑Nai∗yi(xi⋅xj),aj>0
( 3 ) (3) (3)求得分類超平面
f ( x ) = s i g n ( ∑ i = 1 N a i ∗ y i ( x ⋅ x i ) + b ∗ ) f(x)=sign(\sum\limits_{i=1}^Na_i^*y_i(x \cdot x_i)+b^*) f(x)=sign(i=1∑Nai∗yi(x⋅xi)+b∗)
支援向量
- 0 < a i ∗ < C 0<a_i^*<C 0<ai∗<C則 x i x_i xi在間隔邊界上
- a i ∗ = C , 0 < ξ i < 1 a_i^*=C,0 < \xi_i <1 ai∗=C,0<ξi<1則分類正确,且在間隔邊界和超平面之間
- a i ∗ = C , ξ i = 1 a_i^*=C,\xi_i =1 ai∗=C,ξi=1則 x i x_i xi在分離超平面上
- a i ∗ = C , 1 < ξ i a_i^*=C,1 < \xi_i ai∗=C,1<ξi則 x i x_i xi在另一測
合頁損失函數
修改目标函數為
∑ i = 1 N [ 1 − y i ( w ⋅ x + b ) ] + + λ ∣ ∣ w ∣ ∣ 2 \sum\limits_{i=1}^N[1-y_i(w \cdot x+b)]_++ \lambda||w||^2 i=1∑N[1−yi(w⋅x+b)]++λ∣∣w∣∣2
等價于線性支援向量機
取 ξ i = [ 1 − y i ( w ⋅ x + b ) ] + \xi_i=[1-y_i(w \cdot x+b)]_+ ξi=[1−yi(w⋅x+b)]+
則
min w , b ∑ i = 1 N ξ i + λ ∣ ∣ w ∣ ∣ 2 \min\limits_{w,b}\sum\limits_{i=1}^N\xi_i+\lambda||w||^2 w,bmini=1∑Nξi+λ∣∣w∣∣2
取 λ = 1 2 C \lambda=\frac{1}{2C} λ=2C1
則
min w , b 1 C ( C ∑ i = 1 N ξ i + 1 2 λ ∣ ∣ w ∣ ∣ 2 ) \min\limits_{w,b}\frac{1}{C}(C\sum\limits_{i=1}^N\xi_i+\frac{1}{2}\lambda||w||^2) w,bminC1(Ci=1∑Nξi+21λ∣∣w∣∣2)
等價之
非線性支援向量機與核函數
核技巧
針對線性不可分問題,我們應用核技巧
設 ϕ ( x ) \phi(x) ϕ(x)為x向特征空間的映射
k ( x , z ) = ϕ ( x ) ⋅ ϕ ( z ) k(x,z)=\phi(x) \cdot \phi(z) k(x,z)=ϕ(x)⋅ϕ(z)
替換 x j ⋅ x i x_j \cdot x_i xj⋅xi為 k ( x , z ) k(x,z) k(x,z)
正定核
K ( x , z ) K(x,z) K(x,z)為正定核函數的充要條件為其Gram矩陣是半正定的
K = [ K ( x i , x j ) ] m × m K=[K(x_i,x_j)]_{m×m} K=[K(xi,xj)]m×m
為半正定
常用核函數
-
多項式核函數
K ( x , z ) = ( x ⋅ z + 1 ) p K(x,z)=(x \cdot z +1)^p K(x,z)=(x⋅z+1)p
-
高斯核函數
K ( x , z ) = exp ( − ∣ ∣ x − z ∣ ∣ 2 2 σ 2 ) K(x,z)=\exp(-\frac{||x-z||^2}{2\sigma^2}) K(x,z)=exp(−2σ2∣∣x−z∣∣2)
-
字元串核函數
K n ( s , t ) = ∑ u ∈ ∑ n [ ϕ n ( s ) ] n [ ϕ n ( t ) ] n = ∑ u ∈ ∑ n ∑ ( i , j ) : s ( i ) = t ( j ) = u λ l ( i ) + l ( j ) K_n(s,t)=\sum\limits_{u \in \sum^n}[\phi_n(s)]_n[\phi_n(t)]_n=\sum\limits_{u \in \sum^n}\sum\limits_{(i,j):s(i)=t(j)=u}\lambda^{l(i)+l(j)} Kn(s,t)=u∈∑n∑[ϕn(s)]n[ϕn(t)]n=u∈∑n∑(i,j):s(i)=t(j)=u∑λl(i)+l(j)
其中 0 < λ ≤ 1 , l ( i ) 0<\lambda\le1,l(i) 0<λ≤1,l(i)為字元串 i i i的長度,在 s , t s,t s,t子串上進行
l ( i ) = i ∣ u ∣ − i 1 + 1 , 1 ≤ i 1 < i 2 , . . . , i ∣ u ∣ ≤ ∣ s ∣ l(i)=i_{|u|}-i_1+1,1\le i_1<i_2,...,i_{|u|}\le |s| l(i)=i∣u∣−i1+1,1≤i1<i2,...,i∣u∣≤∣s∣
非線性支援向量機
-
定義:從非線性分類訓練集,通過核函數與軟間隔最大化,或凸規劃,學習得到的分類決策函數
f ( x ) = s i g n ( ∑ i = 1 N a i ∗ y i K ( x , x i ) + b ∗ ) f(x)=sign(\sum\limits_{i=1}^Na_i^*y_iK(x,x_i)+b^*) f(x)=sign(i=1∑Nai∗yiK(x,xi)+b∗)
稱為非線性支援向量機, K ( x , z ) K(x,z) K(x,z)為正定核函數
算法:
輸入:線性可分訓練集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i ∈ R n , y i ∈ { − 1 , + 1 } , i = 1 , 2 , . . . , N x_i \in R^n,y_i \in \{-1,+1\},i=1,2,...,N xi∈Rn,yi∈{−1,+1},i=1,2,...,N
輸出:分離超平面和分類決策函數
( 1 ) (1) (1)
min a 1 2 ∑ i = 1 N ∑ j = 1 N a i a j y i y j K ( x i , x j ) − ∑ i = 1 N a i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \min\limits_a\ \frac{1}{2}\sum\limits_{i=1}^N\sum\limits_{j=1}^Na_ia_jy_iy_jK(x_i,x_j)-\sum\limits_{i=1}^Na_i amin 21i=1∑Nj=1∑NaiajyiyjK(xi,xj)−i=1∑Nai
s . t . ∑ i = 1 N a i y i = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s.t.\ \ \sum\limits_{i=1}^Na_iy_i=0 s.t. i=1∑Naiyi=0
0 ≤ a i ≤ C , i = 1 , 2 , . . . , N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \le a_i\le C,i=1,2,...,N 0≤ai≤C,i=1,2,...,N
求解 a ∗ a^* a∗
( 2 ) (2) (2)計算
w ∗ = ∑ i = 1 N a i ∗ y i x i w^*=\sum\limits_{i=1}^Na_i^*y_ix_i w∗=i=1∑Nai∗yixi
b ∗ = y j − ∑ i = 1 N a i ∗ y i K ( x i , x j ) , a j > 0 b^*=y_j-\sum\limits_{i=1}^Na_i^*y_iK(x_i,x_j),a_j>0 b∗=yj−i=1∑Nai∗yiK(xi,xj),aj>0
( 3 ) (3) (3)求得分類超平面
f ( x ) = s i g n ( ∑ i = 1 N a i ∗ y i K ( x i , x ) + b ∗ ) f(x)=sign(\sum\limits_{i=1}^Na_i^*y_iK(x_i,x)+b^*) f(x)=sign(i=1∑Nai∗yiK(xi,x)+b∗)
序列最小最優化算法
選擇兩個違反KKT條件的變量進行優化,直到滿足停止條件或者都滿足KKT條件,如果滿足KKT條件,則是最優解
兩個變量二次規劃的求解方法
設選擇 a 1 , a 2 a_1,a_2 a1,a2
min a 1 , a 2 W ( a 1 , a 2 ) = 1 2 K 11 a 1 2 + 1 2 K 22 a 2 2 + y 1 y 2 K 12 a 1 a 2 − ( a 1 + a 2 ) + y 1 a 1 ∑ i = 3 N y i a i K i 1 + y 2 a 2 ∑ i = 3 N y i a i K i 2 \min\limits_{a_1,a_2}\ \ \ \ \ W(a_1,a_2)=\frac{1}{2}K_{11}a_1^2+\frac{1}{2}K_{22}a_2^2+y_1y_2K_{12}a_1a_2-(a_1+a_2)+y_1a_1\sum\limits_{i=3}^Ny_ia_iK_{i1}+y_2a_2\sum\limits_{i=3}^Ny_ia_iK_{i2} a1,a2min W(a1,a2)=21K11a12+21K22a22+y1y2K12a1a2−(a1+a2)+y1a1i=3∑NyiaiKi1+y2a2i=3∑NyiaiKi2
s . t . a 1 y 1 + a 2 y 2 = − ∑ i = 3 N y i a i = ξ s.t.\ \ \ \ \ \ \ \ a_1y_1+a_2y_2=-\sum\limits_{i=3}^Ny_ia_i=\xi s.t. a1y1+a2y2=−i=3∑Nyiai=ξ
0 ≤ a i ≤ C , i = 1 , 2 \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \le a_i \le C,i=1,2 0≤ai≤C,i=1,2
K i j = K ( x i , x j ) K_{ij}=K(x_i,x_j) Kij=K(xi,xj)
我們要求
L ≤ a 2 n e w ≤ H L \le a_2^{new}\le H L≤a2new≤H
- y 1 ≠ y 2 y_1\ne y_2 y1=y2 L = max ( 0 , a 2 o l d − a 1 o l d ) , R = min ( C , C + a 2 o l d − a 1 o l d ) L=\max(0,a_2^{old}-a_1^{old}),R=\min(C,C+a_2^{old}-a_1^{old}) L=max(0,a2old−a1old),R=min(C,C+a2old−a1old)
-
y 1 = y 2 y_1= y_2 y1=y2 L = max ( 0 , a 2 o l d + a 1 o l d − C ) , R = min ( C , a 2 o l d + a 1 o l d ) L=\max(0,a_2^{old}+a_1^{old}-C),R=\min(C,a_2^{old}+a_1^{old}) L=max(0,a2old+a1old−C),R=min(C,a2old+a1old)
未剪輯和考慮限制條件的解為 a 2 n e w , u n c a_2^{new,unc} a2new,unc
g ( x ) = ∑ i = 1 N a i y i K ( x i , x ) + b g(x)=\sum\limits_{i=1}^Na_iy_iK(x_i,x)+b g(x)=i=1∑NaiyiK(xi,x)+b
E i = g ( x i ) − y i = ( ∑ j = 1 N a j y j K ( x j , x i ) + b ) − y i , i = 1 , 2 E_i=g(x_i)-y_i=(\sum\limits_{j=1}^Na_jy_jK(x_j,x_i)+b)-y_i,\ \ \ \ \ i=1,2 Ei=g(xi)−yi=(j=1∑NajyjK(xj,xi)+b)−yi, i=1,2
則
a 2 n e w , u n c = a 2 o l d + y 2 ( E 1 − E 2 ) η a_2^{new,unc}=a_2^{old}+\frac{y_2(E_1-E_2)}{\eta} a2new,unc=a2old+ηy2(E1−E2)
其中
η = K 11 + K 22 − 2 K 12 \eta=K_{11}+K_{22}-2K_{12} η=K11+K22−2K12
再進行剪輯
a n e w = { H a 2 n e w , u n c > H a 2 n e w , u n c L ≤ a 2 n e w , u n c ≤ H L a 2 n e w , u n c < L a^{new}=\begin{cases} H & a_2^{new,unc}>H\\ a_2^{new,unc} & L \le a_2^{new,unc} \le H\\ L & a_2^{new,unc}<L\\ \end{cases} anew=⎩⎪⎨⎪⎧Ha2new,uncLa2new,unc>HL≤a2new,unc≤Ha2new,unc<L
又
a 1 n e w = a 1 o l d + y 1 y 2 ( a 2 o l d − a 1 o l d ) a_1^{new}=a_1^{old}+y_1y_2(a_2^{old}-a_1^{old}) a1new=a1old+y1y2(a2old−a1old)
-
以上更新公式的證明:
記 v i = ∑ j = 3 N a j y j K ( x i , x j ) = g ( x i ) − ∑ j = 1 2 a j y j K ( x i , x j ) − b v_i=\sum\limits_{j=3}^Na_jy_jK(x_i,x_j)=g(x_i)-\sum\limits_{j=1}^2a_jy_jK(x_i,x_j)-b vi=j=3∑NajyjK(xi,xj)=g(xi)−j=1∑2ajyjK(xi,xj)−b
則原問題為
W ( a 1 , a 2 ) = 1 2 K 11 a 1 2 + 1 2 K 22 a 2 2 + y 1 y 2 K 12 a 1 a 2 − ( a 1 + a 2 ) + y 1 v 1 a 1 + y 2 v 2 a 2 W(a_1,a_2)=\frac{1}{2}K_{11}a_1^2+\frac{1}{2}K_{22}a_2^2+y_1y_2K_{12}a_1a_2-(a_1+a_2)+y_1v_1a_1+y_2v_2a_2 W(a1,a2)=21K11a12+21K22a22+y1y2K12a1a2−(a1+a2)+y1v1a1+y2v2a2
又
a 1 = ( ξ − y 2 a 2 ) y 1 a_1=(\xi-y_2a_2)y_1 a1=(ξ−y2a2)y1
則得到
W ( a 2 ) = 1 2 K 11 ( ξ − a 2 y 2 ) 2 + 1 2 K 22 a 2 2 + y 2 K 12 ( ξ − a 2 y 2 ) a 2 − ( ξ − a 2 y 2 ) y 1 − a 2 + v 1 ( ξ − a 2 y 2 ) + y 2 v 2 a 2 W(a_2)=\frac{1}{2}K_{11}(\xi-a_2y_2)^2+\frac{1}{2}K_{22}a_2^2+y_2K_{12}(\xi-a_2y_2)a_2-(\xi-a_2y_2)y_1-a_2+v_1(\xi-a_2y_2)+y_2v_2a_2 W(a2)=21K11(ξ−a2y2)2+21K22a22+y2K12(ξ−a2y2)a2−(ξ−a2y2)y1−a2+v1(ξ−a2y2)+y2v2a2
求導
∂ W ∂ a 2 = K 11 a 2 + K 22 a 2 − 2 K 12 a 2 − K 11 ξ y 2 + K 12 ξ y 2 + y 1 y 2 − 1 − v 1 y 2 + y 2 v 2 = 0 \frac{\partial W}{\partial a_2}=K_{11}a_2+K_{22}a_2-2K_{12}a_2-K_{11}\xi y_2+K_{12}\xi y_2+y_1y_2-1-v_1y_2+y_2v_2=0 ∂a2∂W=K11a2+K22a2−2K12a2−K11ξy2+K12ξy2+y1y2−1−v1y2+y2v2=0
同時
η = K 11 + K 22 − 2 K 12 \eta=K_{11}+K_{22}-2K_{12} η=K11+K22−2K12
得
a 2 n e w , u n c = a 2 o l d + y 2 ( E 1 − E 2 ) η a_2^{new,unc}=a_2^{old}+\frac{y_2(E_1-E_2)}{\eta} a2new,unc=a2old+ηy2(E1−E2)
變量的選擇方法
-
選擇第一個變量
KTT條件如下
a i = 0 ⟺ y i g ( x i ) ≥ 1 a_i=0\iff y_ig(x_i) \ge 1 ai=0⟺yig(xi)≥1
0 < a i < C ⟺ y i g ( x i ) = 1 0<a_i<C\iff y_ig(x_i) = 1 0<ai<C⟺yig(xi)=1
a i = C ⟺ y i g ( x i ) ≤ 1 a_i=C\iff y_ig(x_i) \le 1 ai=C⟺yig(xi)≤1
優先選擇不滿足第二個條件,再周遊整個資料集選其他不滿足的
-
選擇第二個變量
在第一個選擇後,我們選擇 a 2 a_2 a2的原則是盡量變化的快,即
- E 1 > 0 E_1>0 E1>0,選最小的 E 2 E_2 E2
-
E 1 < 0 E_1<0 E1<0,選最大的 E 2 E_2 E2
優先選擇間隔邊界上的點,如果沒有變化快的,則周遊整個資料集,如果再沒有,則放棄 a 1 a_1 a1重新選擇 a 1 a_1 a1
-
計算 b b b和 E i E_i Ei
由KKT條件, 0 < a 1 n e w < C 0<a_1^{new}<C 0<a1new<C
∑ i = 1 N a i y i K i 1 + b = y 1 \sum\limits_{i=1}^Na_iy_iK_{i1}+b=y_1 i=1∑NaiyiKi1+b=y1
則
b 1 n e w = y 1 − ∑ i = 3 N a i y i K i 1 − a 1 n e w y 1 K 11 − a 2 n e w y 2 K 21 b_1^{new}=y_1-\sum\limits_{i=3}^Na_iy_iK_{i1}-a_1^{new}y_1K_{11}-a_2^{new}y_2K_{21} b1new=y1−i=3∑NaiyiKi1−a1newy1K11−a2newy2K21
又
E 1 = ∑ i = 3 N a i y i K i 1 + a 1 o l d y 1 K 11 + a 2 o l d y 2 K 21 + b o l d − y 1 E_1=\sum\limits_{i=3}^Na_iy_iK_{i1}+a_1^{old}y_1K_{11}+a_2^{old}y_2K_{21}+b^{old}-y_1 E1=i=3∑NaiyiKi1+a1oldy1K11+a2oldy2K21+bold−y1
由兩項得
b 1 n e w = − E 1 − y 1 K 11 ( a 1 n e w − a 1 o l d ) − y 2 K 21 ( a 2 n e w − a 2 o l d ) + b o l d b_1^{new}=-E_1-y_1K_{11}(a_1^{new}-a_1^{old})-y_2K_{21}(a_2^{new}-a_2^{old})+b^{old} b1new=−E1−y1K11(a1new−a1old)−y2K21(a2new−a2old)+bold
同樣如果 0 < a 2 n e w < C 0<a_2^{new}<C 0<a2new<C
b 2 n e w = − E 2 − y 1 K 12 ( a 1 n e w − a 1 o l d ) − y 2 K 22 ( a 2 n e w − a 2 o l d ) + b o l d b_2^{new}=-E_2-y_1K_{12}(a_1^{new}-a_1^{old})-y_2K_{22}(a_2^{new}-a_2^{old})+b^{old} b2new=−E2−y1K12(a1new−a1old)−y2K22(a2new−a2old)+bold
如果 a 1 n e w , a 2 n e w a_1^{new},a_2^{new} a1new,a2new同時滿足條件,則 b 1 n e w = b 2 n e w b_1^{new}=b_2^{new} b1new=b2new
如果 a 1 n e w , a 2 n e w a_1^{new},a_2^{new} a1new,a2new為0或 C C C,則我們取 b n e w = b 1 n e w + b 2 n e w 2 b^{new}=\frac{b_1^{new}+b_2^{new}}{2} bnew=2b1new+b2new
最後
E i n e w = ∑ S y j a j K ( x i , x j ) + b n e w − y i E_i^{new}=\sum\limits_{S}y_ja_jK(x_i,x_j)+b^{new}-y_i Einew=S∑yjajK(xi,xj)+bnew−yi
其中 S S S為支援向量的集合
SMO算法
輸入:訓練資料集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } , x i ∈ R n , y i ∈ { − 1 , + 1 } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\},x_i \in R^n,y_i \in \{-1,+1\} T={(x1,y1),(x2,y2),...,(xN,yN)},xi∈Rn,yi∈{−1,+1},精度 ϵ \epsilon ϵ
輸出:近似解 a ^ \hat{a} a^
( 1 ) (1) (1)取初始值 a ( 0 ) = 0 , k = 0 a^{(0)}=0,k=0 a(0)=0,k=0
( 2 ) (2) (2)按照算法求解以 a 1 ( k ) a 2 ( k ) , a^{(k)}_1a^{(k)}_2, a1(k)a2(k),求 a 1 ( k + 1 ) a 2 ( k + 1 ) , a^{(k+1)}_1a^{(k+1)}_2, a1(k+1)a2(k+1),
( 3 ) (3) (3)如果以精度 ϵ \epsilon ϵ滿足條件則停止,
∑ i = 1 N a i y i = 0 , 0 ≤ a i ≤ C , i = 1 , 2 , . . . , N \sum\limits_{i=1}^Na_iy_i=0,0\le a_i \le C,i=1,2,...,N i=1∑Naiyi=0,0≤ai≤C,i=1,2,...,N
y i ⋅ g ( x i ) = { ≥ 1 { x i ∣ a i = 0 } = 1 { x i ∣ 0 < a i < C } ≤ 1 { x i ∣ a i = C } y_i \cdot g(x_i)=\begin{cases} \ge 1 &\{x_i|a_i=0\}\\ =1 &\{x_i|0<a_i<C\}\\ \le 1 & \{x_i|a_i=C\}\\ \end{cases} yi⋅g(xi)=⎩⎪⎨⎪⎧≥1=1≤1{xi∣ai=0}{xi∣0<ai<C}{xi∣ai=C}
其中
g ( x i ) = ∑ j = 1 N a j y j K ( x j , x i ) + b g(x_i)=\sum\limits_{j=1}^Na_jy_jK(x_j,x_i)+b g(xi)=j=1∑NajyjK(xj,xi)+b
否則轉 ( 4 ) , k = k + 1 (4),k=k+1 (4),k=k+1
( 4 ) (4) (4) a ^ = a ( k + 1 ) \hat{a}=a^{(k+1)} a^=a(k+1)