Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2 3 4
Sample Output
2 2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2. In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
題目意思:求n^n結果的第一位。
解題思路:我們可以将其看成幂指函數,那麼我們對其處理也就順其自然了,n^n = 10 ^ (log10(n^n)) = 10 ^ (n * log10(n)),
然後我們可以觀察到: n^n = 10 ^ (N + s) 其中,N 是一個整數 s 是一個小數。由于10的任何整數次幂首位一定為1,是以首位隻和s(小數部分)有關。
1 #include<cmath>
2 #include<cstdio>
3 #include<algorithm>
4 #define ll long long int
5 using namespace std;
6 int main()
7 {
8 int t,n;
9 double m;
10 scanf("%d",&t);
11 while(t--)
12 {
13 scanf("%d",&n);
14 m=n*log10(n);
15 m=m-(ll)(m);
16 m=pow(10.0,m);
17 printf("%d\n",(int)(m));
18 }
19 return 0;
20 }
轉載于:https://www.cnblogs.com/wkfvawl/p/9570013.html