天天看點

The x86 kvm shadow mmu

The mmu (in arch/x86/kvm, files mmu.[ch] and paging_tmpl.h) is responsible

for presenting a standard x86 mmu to the guest, while translating guest

physical addresses to host physical addresses.

The mmu code attempts to satisfy the following requirements:

    - correctness: the guest should not be able to determine that it is running

                   on an emulated mmu except for timing (we attempt to comply

                   with the specification, not emulate the characteristics of

                   a particular implementation such as tlb size)

    - security:    the guest must not be able to touch host memory not assigned

                   to it

    - performance: minimize the performance penalty imposed by the mmu

    - scaling:     need to scale to large memory and large vcpu guests

    - hardware:    support the full range of x86 virtualization hardware

    - integration: Linux memory management code must be in control of guest memory

                   so that swapping, page migration, page merging, transparent

                   hugepages, and similar features work without change

    - dirty tracking: report writes to guest memory to enable live migration

                   and framebuffer-based displays

    - footprint:   keep the amount of pinned kernel memory low (most memory

                   should be shrinkable)

    - reliability:  avoid multipage or GFP_ATOMIC allocations

    Acronyms

    ========

    pfn   host page frame number

    hpa   host physical address

    hva   host virtual address

    gfn   guest frame number

    gpa   guest physical address

    gva   guest virtual address

    ngpa  nested guest physical address

    ngva  nested guest virtual address

    pte   page table entry (used also to refer generically to paging structure

          entries)

    gpte  guest pte (referring to gfns)

    spte  shadow pte (referring to pfns)

    tdp   two dimensional paging (vendor neutral term for NPT and EPT)

    Virtual and real hardware supported

    ===================================

    The mmu supports first-generation mmu hardware, which allows an atomic switch

    of the current paging mode and cr3 during guest entry, as well as

    two-dimensional paging (AMD's NPT and Intel's EPT).  The emulated hardware

    it exposes is the traditional 2/3/4 level x86 mmu, with support for global

    pages, pae, pse, pse36, cr0.wp, and 1GB pages.  Work is in progress to support

    exposing NPT capable hardware on NPT capable hosts.

    Translation

    ===========

    The primary job of the mmu is to program the processor's mmu to translate

    addresses for the guest.  Different translations are required at different

    times:

    - when guest paging is disabled, we translate guest physical addresses to

      host physical addresses (gpa->hpa)

    - when guest paging is enabled, we translate guest virtual addresses, to

      guest physical addresses, to host physical addresses (gva->gpa->hpa)

    - when the guest launches a guest of its own, we translate nested guest

      virtual addresses, to nested guest physical addresses, to guest physical

      addresses, to host physical addresses (ngva->ngpa->gpa->hpa)

    The primary challenge is to encode between 1 and 3 translations into hardware

    that support only 1 (traditional) and 2 (tdp) translations.  When the

    number of required translations matches the hardware, the mmu operates in

    direct mode; otherwise it operates in shadow mode (see below).

    Memory

    ======

    Guest memory (gpa) is part of the user address space of the process that is

    using kvm.  Userspace defines the translation between guest addresses and user

    addresses (gpa->hva); note that two gpas may alias to the same hva, but not

    vice versa.

    These hvas may be backed using any method available to the host: anonymous

    memory, file backed memory, and device memory.  Memory might be paged by the

    host at any time.

    Events

    ======

    The mmu is driven by events, some from the guest, some from the host.

    Guest generated events:

    - writes to control registers (especially cr3)

    - invlpg/invlpga instruction execution

    - access to missing or protected translations

    Host generated events:

    - changes in the gpa->hpa translation (either through gpa->hva changes or

      through hva->hpa changes)

    - memory pressure (the shrinker)

    Shadow pages

    ============

    The principal data structure is the shadow page, 'struct kvm_mmu_page'.  A

    shadow page contains 512 sptes, which can be either leaf or nonleaf sptes.  A

    shadow page may contain a mix of leaf and nonleaf sptes.

    A nonleaf spte allows the hardware mmu to reach the leaf pages and

    is not related to a translation directly.  It points to other shadow pages.

    A leaf spte corresponds to either one or two translations encoded into

    one paging structure entry.  These are always the lowest level of the

    translation stack, with optional higher level translations left to NPT/EPT.

    Leaf ptes point at guest pages.

    The following table shows translations encoded by leaf ptes, with higher-level

    translations in parentheses:

     Non-nested guests:

      nonpaging:     gpa->hpa

      paging:        gva->gpa->hpa

      paging, tdp:   (gva->)gpa->hpa

     Nested guests:

      non-tdp:       ngva->gpa->hpa  (*)

      tdp:           (ngva->)ngpa->gpa->hpa

    (*) the guest hypervisor will encode the ngva->gpa translation into its page

        tables if npt is not present

    Shadow pages contain the following information:

      role.level:

        The level in the shadow paging hierarchy that this shadow page belongs to.

        1=4k sptes, 2=2M sptes, 3=1G sptes, etc.

      role.direct:

        If set, leaf sptes reachable from this page are for a linear range.

        Examples include real mode translation, large guest pages backed by small

        host pages, and gpa->hpa translations when NPT or EPT is active.

        The linear range starts at (gfn << PAGE_SHIFT) and its size is determined

        by role.level (2MB for first level, 1GB for second level, 0.5TB for third

        level, 256TB for fourth level)

        If clear, this page corresponds to a guest page table denoted by the gfn

        field.

      role.quadrant:

        When role.cr4_pae=0, the guest uses 32-bit gptes while the host uses 64-bit

        sptes.  That means a guest page table contains more ptes than the host,

        so multiple shadow pages are needed to shadow one guest page.

        For first-level shadow pages, role.quadrant can be 0 or 1 and denotes the

        first or second 512-gpte block in the guest page table.  For second-level

        page tables, each 32-bit gpte is converted to two 64-bit sptes

        (since each first-level guest page is shadowed by two first-level

        shadow pages) so role.quadrant takes values in the range 0..3.  Each

        quadrant maps 1GB virtual address space.

      role.access:

        Inherited guest access permissions in the form uwx.  Note execute

        permission is positive, not negative.

      role.invalid:

        The page is invalid and should not be used.  It is a root page that is

        currently pinned (by a cpu hardware register pointing to it); once it is

        unpinned it will be destroyed.

      role.cr4_pae:

        Contains the value of cr4.pae for which the page is valid (e.g. whether

        32-bit or 64-bit gptes are in use).

      role.nxe:

        Contains the value of efer.nxe for which the page is valid.

      role.cr0_wp:

        Contains the value of cr0.wp for which the page is valid.

      gfn:

        Either the guest page table containing the translations shadowed by this

        page, or the base page frame for linear translations.  See role.direct.

      spt:

        A pageful of 64-bit sptes containing the translations for this page.

        Accessed by both kvm and hardware.

        The page pointed to by spt will have its page->private pointing back

        at the shadow page structure.

        sptes in spt point either at guest pages, or at lower-level shadow pages.

        Specifically, if sp1 and sp2 are shadow pages, then sp1->spt[n] may point

        at __pa(sp2->spt).  sp2 will point back at sp1 through parent_pte.

        The spt array forms a DAG structure with the shadow page as a node, and

        guest pages as leaves.

      gfns:

        An array of 512 guest frame numbers, one for each present pte.  Used to

        perform a reverse map from a pte to a gfn. When role.direct is set, any

        element of this array can be calculated from the gfn field when used, in

        this case, the array of gfns is not allocated. See role.direct and gfn.

      slot_bitmap:

        A bitmap containing one bit per memory slot.  If the page contains a pte

        mapping a page from memory slot n, then bit n of slot_bitmap will be set

        (if a page is aliased among several slots, then it is not guaranteed that

        all slots will be marked).

        Used during dirty logging to avoid scanning a shadow page if none if its

        pages need tracking.

      root_count:

        A counter keeping track of how many hardware registers (guest cr3 or

        pdptrs) are now pointing at the page.  While this counter is nonzero, the

        page cannot be destroyed.  See role.invalid.

      multimapped:

        Whether there exist multiple sptes pointing at this page.

      parent_pte/parent_ptes:

        If multimapped is zero, parent_pte points at the single spte that points at

        this page's spt.  Otherwise, parent_ptes points at a data structure

        with a list of parent_ptes.

      unsync:

        If true, then the translations in this page may not match the guest's

        translation.  This is equivalent to the state of the tlb when a pte is

        changed but before the tlb entry is flushed.  Accordingly, unsync ptes

        are synchronized when the guest executes invlpg or flushes its tlb by

        other means.  Valid for leaf pages.

      unsync_children:

        How many sptes in the page point at pages that are unsync (or have

        unsynchronized children).

      unsync_child_bitmap:

        A bitmap indicating which sptes in spt point (directly or indirectly) at

        pages that may be unsynchronized.  Used to quickly locate all unsychronized

        pages reachable from a given page.

    Reverse map

    ===========

    The mmu maintains a reverse mapping whereby all ptes mapping a page can be

    reached given its gfn.  This is used, for example, when swapping out a page.

    Synchronized and unsynchronized pages

    =====================================

    The guest uses two events to synchronize its tlb and page tables: tlb flushes

    and page invalidations (invlpg).

    A tlb flush means that we need to synchronize all sptes reachable from the

    guest's cr3.  This is expensive, so we keep all guest page tables write

    protected, and synchronize sptes to gptes when a gpte is written.

    A special case is when a guest page table is reachable from the current

    guest cr3.  In this case, the guest is obliged to issue an invlpg instruction

    before using the translation.  We take advantage of that by removing write

    protection from the guest page, and allowing the guest to modify it freely.

    We synchronize modified gptes when the guest invokes invlpg.  This reduces

    the amount of emulation we have to do when the guest modifies multiple gptes,

    or when the a guest page is no longer used as a page table and is used for

    random guest data.

    As a side effect we have to resynchronize all reachable unsynchronized shadow

    pages on a tlb flush.

    Reaction to events

    ==================

    - guest page fault (or npt page fault, or ept violation)

    This is the most complicated event.  The cause of a page fault can be:

      - a true guest fault (the guest translation won't allow the access) (*)

      - access to a missing translation

      - access to a protected translation

        - when logging dirty pages, memory is write protected

        - synchronized shadow pages are write protected (*)

      - access to untranslatable memory (mmio)

      (*) not applicable in direct mode

    Handling a page fault is performed as follows:

     - if needed, walk the guest page tables to determine the guest translation

       (gva->gpa or ngpa->gpa)

       - if permissions are insufficient, reflect the fault back to the guest

     - determine the host page

       - if this is an mmio request, there is no host page; call the emulator

         to emulate the instruction instead

     - walk the shadow page table to find the spte for the translation,

       instantiating missing intermediate page tables as necessary

     - try to unsynchronize the page

       - if successful, we can let the guest continue and modify the gpte

     - emulate the instruction

       - if failed, unshadow the page and let the guest continue

     - update any translations that were modified by the instruction

    invlpg handling:

      - walk the shadow page hierarchy and drop affected translations

      - try to reinstantiate the indicated translation in the hope that the

        guest will use it in the near future

    Guest control register updates:

    - mov to cr3

      - look up new shadow roots

      - synchronize newly reachable shadow pages

    - mov to cr0/cr4/efer

      - set up mmu context for new paging mode

      - look up new shadow roots

      - synchronize newly reachable shadow pages

    Host translation updates:

      - mmu notifier called with updated hva

      - look up affected sptes through reverse map

      - drop (or update) translations

    Emulating cr0.wp

    ================

    If tdp is not enabled, the host must keep cr0.wp=1 so page write protection

    works for the guest kernel, not guest guest userspace.  When the guest

    cr0.wp=1, this does not present a problem.  However when the guest cr0.wp=0,

    we cannot map the permissions for gpte.u=1, gpte.w=0 to any spte (the

    semantics require allowing any guest kernel access plus user read access).

    We handle this by mapping the permissions to two possible sptes, depending

    on fault type:

    - kernel write fault: spte.u=0, spte.w=1 (allows full kernel access,

      disallows user access)

    - read fault: spte.u=1, spte.w=0 (allows full read access, disallows kernel

      write access)

    (user write faults generate a #PF)

    Large pages

    ===========

    The mmu supports all combinations of large and small guest and host pages.

    Supported page sizes include 4k, 2M, 4M, and 1G.  4M pages are treated as

    two separate 2M pages, on both guest and host, since the mmu always uses PAE

    paging.

    To instantiate a large spte, four constraints must be satisfied:

    - the spte must point to a large host page

    - the guest pte must be a large pte of at least equivalent size (if tdp is

      enabled, there is no guest pte and this condition is satisified)

    - if the spte will be writeable, the large page frame may not overlap any

      write-protected pages

    - the guest page must be wholly contained by a single memory slot

    To check the last two conditions, the mmu maintains a ->write_count set of

    arrays for each memory slot and large page size.  Every write protected page

    causes its write_count to be incremented, thus preventing instantiation of

    a large spte.  The frames at the end of an unaligned memory slot have

    artificically inflated ->write_counts so they can never be instantiated.

繼續閱讀