天天看點

python中plt hist用法_關于python中plt.hist參數的使用詳解

如下所示:

matplotlib.pyplot.hist(

x, bins=10, range=None, normed=False,

weights=None, cumulative=False, bottom=None,

histtype=u'bar', align=u'mid', orientation=u'vertical',

rwidth=None, log=False, color=None, label=None, stacked=False,

hold=None, **kwargs)

x : (n,) array or sequence of (n,) arrays

這個參數是指定每個bin(箱子)分布的資料,對應x軸

bins : integer or array_like, optional

這個參數指定bin(箱子)的個數,也就是總共有幾條條狀圖

normed : boolean, optional

If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e.,n/(len(x)`dbin)

這個參數指定密度,也就是每個條狀圖的占比例比,預設為1

color : color or array_like of colors or None, optional

這個指定條狀圖的顔色

我們繪制一個10000個資料的分布條狀圖,共50份,以統計10000分的分布情況

"""

Demo of the histogram (hist) function with a few features.

In addition to the basic histogram, this demo shows a few optional features:

* Setting the number of data bins

* The ``normed`` flag, which normalizes bin heights so that the integral of

the histogram is 1. The resulting histogram is a probability density.

* Setting the face color of the bars

* Setting the opacity (alpha value).

"""

import numpy as np

import matplotlib.mlab as mlab

import matplotlib.pyplot as plt

# example data

mu = 100 # mean of distribution

sigma = 15 # standard deviation of distribution

x = mu + sigma * np.random.randn(10000)

num_bins = 50

# the histogram of the data

n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5)

# add a 'best fit' line

y = mlab.normpdf(bins, mu, sigma)

plt.plot(bins, y, 'r--')

plt.xlabel('Smarts')

plt.ylabel('Probability')

plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')

# Tweak spacing to prevent clipping of ylabel

plt.subplots_adjust(left=0.15)

plt.show()

python中plt hist用法_關于python中plt.hist參數的使用詳解

以上這篇關于python中plt.hist參數的使用詳解就是小編分享給大家的全部内容了,希望能給大家一個參考,也希望大家多多支援IIS7站長之家。