題意:給一個n個點的無向圖,求它的點連通度,即最少删除多少個點,使得圖不連通
思路:求點連通度,邊連通度都可以轉化為網絡流來做,拆點如果有U->V,那麼連U+N->V和V+N->U,然後枚舉源點彙點求最大流即可
#include<bits/stdc++.h>
using namespace std;
#define INF 1e9
const int maxn = 1000;
struct Edge
{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic
{
int n,m,s,t;
vector<Edge>edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
void init(int n)
{
for (int i = 0;i<=n;i++)
G[i].clear();
edges.clear();
}
bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=0;
vis[s]=1;
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i = 0;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap>e.flow){
vis[e.to]=1;
d[e.to]=d[x]+1;
q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){
if (x==t || a==0)
return a;
int flow = 0,f;
for (int &i=cur[x];i<G[x].size();i++){
Edge&e = edges[G[x][i]];
if (d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if (a==0)
break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
this->s=s;
this->t=t;
int flow = 0;
while (BFS())
{
memset(cur,0,sizeof(cur));
flow+=DFS(s,INF);
}
return flow;
}
}di;
int uu[maxn],vv[maxn];
void addedge(int n,int m)
{
di.init(2*n+2);
for (int i = 1;i<=n;i++)
di.AddEdge(i,i+n,1);
for (int i = 0;i<m;i++)
{
di.AddEdge(uu[i]+n,vv[i],INF);
di.AddEdge(vv[i]+n,uu[i],INF);
}
}
int main()
{
int n,m;
while (scanf("%d%d",&n,&m)!=EOF)
{
di.init(2*n+2);
for (int i = 0;i<m;i++)
{
int u,v;
scanf(" (%d,%d)",&uu[i],&vv[i]);
uu[i]++,vv[i]++;
}
int ans = INF;
for (int i = 1;i<=n;i++)
for (int j = 1;j<=n;j++)
if (i==j)
continue;
else
{
addedge(n,m);
ans = min(ans,di.Maxflow(i+n,j));
}
if (ans == INF)
ans = n;
printf("%d\n",ans);
}
}