代價函數,原理參考
代碼
import re
import matplotlib.pyplotasplt
import numpyasnp
import pandasaspdfromnumpy import exp
def data():#讀取txt文本内的資料并轉成需要的list
f=open('data.txt')
data=[]for each_line inf:
each_line=each_line.strip('\n')
res=re.split(" ",each_line)
res=list(filter(None,res))
res= list(map(float,res))
data.append(res)for i inrange(len(data)):#加一個偏執項
data[i].insert(0,1)
f.close()returndata
def sin_cos(data,weights):#畫圖
x0=[]
x1=[]
y0=[]
y1=[]for i indata:if(i[3]==0):
x0.append(i[1])
y0.append(i[2])else:
x1.append(i[1])
y1.append(i[2])
fig=plt.figure()
ax= fig.add_subplot(111)
ax.scatter(x0,y0,marker='+',label='1',s=40,c='r')
ax.scatter(x1,y1,marker='*',label='1',s=40,c='b')
x= np.arange(-3, 3, 0.1)
y= (-weights[0, 0] - weights[1, 0] * x) / weights[2, 0] #matix
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.savefig('test.png')
plt.show()
def sigmoid(inX):#邏輯函數return 1.0/(1+exp(-inX))
'''def to_csv(data):
name=['x1','x2','y']
test=pd.DataFrame(columns=name,data=data)
test.to_csv('data.csv',encoding='utf-8')'''
def tiduxiajiang_sigmoid(data):
x=[]
y=[]for i inrange(len(data)):
x.append(data[i][:-1])
y.append(data[i][-1:])
alpha=0.002maxcycle=100x=np.mat(x)#轉成矩陣
y=np.mat(y)
x2=x.T#矩陣轉逆
weights=np.mat([[1],[1],[1]])for i inrange(maxcycle):
h= sigmoid(x*weights)
error=y-h
weights=weights+alpha*x2*error
print(sum(error))#看是否收斂returnweights
data=data()
weights=tiduxiajiang_sigmoid(data)
sin_cos(data,weights)
print('\n')
print(weights)
#to_csv(data)
error輸出:
[[-36.41425331]]
[[-12.72376078]]
[[33.81527249]]
[[22.76406708]]
[[13.06316319]]
[[18.43125645]]
[[13.940586]]
[[16.64375254]]
[[14.0792666]]
[[15.48731269]]
[[13.90872727]]
[[14.62827295]]
[[13.59898126]]
[[13.93720427]]
[[13.23050463]]
[[13.35316688]]
[[12.84395627]]
[[12.84416803]]
[[12.46028295]]
[[12.3918111]]
[[12.09008779]]
[[11.98454135]]
[[11.73835456]]
[[11.61447392]]
[[11.4069633]]
[[11.27583756]]
[[11.09608423]]
[[10.96417886]]
[[10.80497149]]
[[10.67593363]]
[[10.53242193]]
[[10.40818021]]
[[10.27704098]]
[[10.15848557]]
[[10.03739503]]
[[9.92480135]]
[[9.81209603]]
[[9.70538874]]
[[9.59984542]]
[[9.49876158]]
[[9.39945381]]
[[9.30364189]]
[[9.20984624]]
[[9.11892452]]
[[9.03005934]]
[[8.94364882]]
[[8.85923404]]
[[8.77697561]]
[[8.6966063]]
[[8.61816858]]
[[8.54149713]]
[[8.46657885]]
[[8.39330291]]
[[8.32163239]]
[[8.25148629]]
[[8.18281944]]
[[8.11556799]]
[[8.04968572]]
[[7.98511945]]
[[7.92182501]]
[[7.85975645]]
[[7.79887283]]
[[7.73913354]]
[[7.68050112]]
[[7.62293922]]
[[7.5664137]]
[[7.51089176]]
[[7.45634232]]
[[7.40273562]]
[[7.35004333]]
[[7.29823835]]
[[7.2472948]]
[[7.19718792]]
[[7.14789401]]
[[7.09939038]]
[[7.0516553]]
[[7.0046679]]
[[6.9584082]]
[[6.91285699]]
[[6.86799582]]
[[6.82380698]]
[[6.78027341]]
[[6.73737871]]
[[6.6951071]]
[[6.65344337]]
[[6.61237286]]
[[6.57188145]]
[[6.53195552]]
[[6.4925819]]
[[6.45374791]]
[[6.41544128]]
[[6.37765016]]
[[6.34036308]]
[[6.30356898]]
[[6.26725712]]
[[6.23141712]]
[[6.19603895]]
[[6.16111286]]
[[6.12662941]]
[[6.09257947]]
達到收斂的目的
weights輸出
[[ 2.78742697]
[ 0.36340767]
[-0.45020801]]
結果圖;

data.txt樣式;
-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
0.667394 12.741452 0
-2.460150 6.866805 1
0.569411 9.548755 0
-0.026632 10.427743 0
0.850433 6.920334 1
1.347183 13.175500 0
1.176813 3.167020 1
-1.781871 9.097953 0
-0.566606 5.749003 1
0.931635 1.589505 1
-0.024205 6.151823 1
-0.036453 2.690988 1
-0.196949 0.444165 1
1.014459 5.754399 1
1.985298 3.230619 1
-1.693453 -0.557540 1
-0.576525 11.778922 0
-0.346811 -1.678730 1
-2.124484 2.672471 1
1.217916 9.597015 0
-0.733928 9.098687 0
-3.642001 -1.618087 1
0.315985 3.523953 1
1.416614 9.619232 0
-0.386323 3.989286 1
0.556921 8.294984 1
1.224863 11.587360 0
-1.347803 -2.406051 1
1.196604 4.951851 1
0.275221 9.543647 0
0.470575 9.332488 0
-1.889567 9.542662 0
-1.527893 12.150579 0
-1.185247 11.309318 0
-0.445678 3.297303 1
1.042222 6.105155 1
-0.618787 10.320986 0
1.152083 0.548467 1
0.828534 2.676045 1
-1.237728 10.549033 0
-0.683565 -2.166125 1
0.229456 5.921938 1
-0.959885 11.555336 0
0.492911 10.993324 0
0.184992 8.721488 0
-0.355715 10.325976 0
-0.397822 8.058397 0
0.824839 13.730343 0
1.507278 5.027866 1
0.099671 6.835839 1
-0.344008 10.717485 0
1.785928 7.718645 1
-0.918801 11.560217 0
-0.364009 4.747300 1
-0.841722 4.119083 1
0.490426 1.960539 1
-0.007194 9.075792 0
0.356107 12.447863 0
0.342578 12.281162 0
-0.810823 -1.466018 1
2.530777 6.476801 1
1.296683 11.607559 0
0.475487 12.040035 0
-0.783277 11.009725 0
0.074798 11.023650 0
-1.337472 0.468339 1
-0.102781 13.763651 0
-0.147324 2.874846 1
0.518389 9.887035 0
1.015399 7.571882 0
-1.658086 -0.027255 1
1.319944 2.171228 1
2.056216 5.019981 1
-0.851633 4.375691 1
-1.510047 6.061992 0
-1.076637 -3.181888 1
1.821096 10.283990 0
3.010150 8.401766 1
-1.099458 1.688274 1
-0.834872 -1.733869 1
-0.846637 3.849075 1
1.400102 12.628781 0
1.752842 5.468166 1
0.078557 0.059736 1
0.089392 -0.715300 1
1.825662 12.693808 0
0.197445 9.744638 0
0.126117 0.922311 1
-0.679797 1.220530 1
0.677983 2.556666 1
0.761349 10.693862 0
-2.168791 0.143632 1
1.388610 9.341997 0
0.317029 14.739025 0