1059 Prime Factors (25分)
Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1k1×p2k2×⋯×pmkm.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N
=
p1
^
k1
*
p2
^
k2
*
…
*
pm
^
km, where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi, ki is 1 and must NOT be printed out.
Sample Input:
97532468
Sample Output:
97532468=2^2*11*17*101*1291
解題思路:
這道題給我們一個int範圍的整數n,按照從小到大的順序輸出其質因數分解的結果。這其實就是一道很普通的質因數分解闆子題。我們先打好一個素數表,然後用一個結構體來儲存質因子數。然後題目中說是int範圍内的正整數進行質因子分解,是以我們的素數表大概開
就可以了。
#include<iostream>
#include<math.h>
using namespace std;
struct factor {
int num;
int cnt;
}fac[10];
int prime[100010], pNum = 0;
int isPrime(int n) //判斷是否是素數
{
if (n <= 1)
return 0;
for (int i = 2; i <= sqrt(n); i++)
{
if (n%i == 0)
return 0;
}
return 1;
}
void primeTable()
{
for (int i = 0; i < 100010; i++)
{
if (isPrime(i) == 1)
prime[pNum++] = i;
}
}
int main()
{
primeTable(); //先打好表
int n;
int count = 0; //記錄質因子的個數
cin >> n;
if (n == 1) //注意特殊情況
cout << "1=1" << endl;
else {
cout << n << "=";
for (int i = 0;prime[i] <= sqrt(n); i++)
{
if (n%prime[i] == 0)
{
fac[count].num = prime[i];
fac[count].cnt = 0;
while (n%prime[i] == 0)
{
n /= prime[i];
fac[count].cnt++;
}
count++; //質因子個數加1
}
if (n == 1)
break; //及時退出
}
if (n != 1) //注意如果不能被根号n裡的數整除,那麼就一定有一個大于根号n的質因子
{
fac[count].num = n;
fac[count++].cnt = 1;
}
//輸出結果
for (int i = 0; i < count; i++)
{
cout << fac[i].num;
if (fac[i].cnt > 1)
cout << "^" << fac[i].cnt;
if (i<count-1)
cout << "*";
}
}
return 0;
}