天天看點

SpringBoot 8種異步實作方式

作者:散文随風想
前言:異步執行對于開發者來說并不陌生,在實際的開發過程中,很多場景多會使用到異步,相比同步執行,異步可以大大縮短請求鍊路耗時時間,比如:「發送短信、郵件、異步更新等」,這些都是典型的可以通過異步實作的場景。

一、異步的八種實作方式

1、線程Thread

2、Future

3、異步架構CompletableFuture

4、Spring注解@Async

5、Spring ApplicationEvent事件

6、消息隊列

7、第三方異步架構,比如Hutool的ThreadUtil

8、Guava異步

二、什麼是異步?

首先先看一個常見的使用者下單的場景:

SpringBoot 8種異步實作方式

什麼是異步?

在同步操作中,執行到 發送短信 的時候,我們必須等待這個方法徹底執行完才能執行 贈送積分 這個操作,如果 贈送積分 這個動作執行時間較長,發送短信需要等待,這就是典型的同步場景。

實際上,發送短信和贈送積分沒有任何的依賴關系,通過異步,我們可以實作贈送積分和發送短信這兩個操作能夠同時進行,比如:

SpringBoot 8種異步實作方式

這就是所謂的異步,是不是非常簡單,下面就說說異步的幾種實作方式吧。

三、異步程式設計

1、線程異步

public class AsyncThread extends Thread {
    @Override
    public void run() {
        System.out.println("Current thread name:" + Thread.currentThread().getName() + " Send email success!");
    }

    public static void main(String[] args) {
        AsyncThread asyncThread = new AsyncThread();
        asyncThread.run();
    }
}           

當然如果每次都建立一個Thread線程,頻繁的建立、銷毀,浪費系統資源,我們可以采用線程池:

private ExecutorService executorService = Executors.newCachedThreadPool();

public void fun() {
    executorService.submit(new Runnable() {
        @Override
        public void run() {
            log.info("執行業務邏輯...");
        }
    });
}           

可以将業務邏輯封裝到Runnable或Callable中,交由線程池來執行。

2、 Future異步

@Slf4j
public class FutureManager {
    public String execute() throws Exception {
        ExecutorService executor = Executors.newFixedThreadPool(1);
        Future<String> future = executor.submit(new Callable<String>() {
            @Override
            public String call() throws Exception {
                System.out.println(" --- task start --- ");
                Thread.sleep(3000);
                System.out.println(" --- task finish ---");
                return "this is future execute final result!!!";
            }
        });

        //這裡需要傳回值時會阻塞主線程
        String result = future.get();
        log.info("Future get result: {}", result);
        return result;
    }

    @SneakyThrows
    public static void main(String[] args) {
        FutureManager manager = new FutureManager();
        manager.execute();
    }
}           

輸出結果:

--- task start --- 
 --- task finish ---
 Future get result: this is future execute final result!!!           

(1) Future的不足之處

Future的不足之處的包括以下幾點:

無法被動接收異步任務的計算結果:雖然我們可以主動将異步任務送出給線程池中的線程來執行,但是待異步任務執行結束之後,主線程無法得到任務完成與否的通知,它需要通過get方法主動擷取任務執行的結果。 Future件彼此孤立:有時某一個耗時很長的異步任務執行結束之後,你想利用它傳回的結果再做進一步的運算,該運算也會是一個異步任務,兩者之間的關系需要程式開發人員手動進行綁定賦予,Future并不能将其形成一個任務流(pipeline),每一個Future都是彼此之間都是孤立的,是以才有了後面的CompletableFuture,CompletableFuture就可以将多個Future串聯起來形成任務流。 Futrue沒有很好的錯誤處理機制:截止目前,如果某個異步任務在執行發的過程中發生了異常,調用者無法被動感覺,必須通過捕獲get方法的異常才知曉異步任務執行是否出現了錯誤,進而在做進一步的判斷處理。

3、CompletableFuture實作異步

public class CompletableFutureCompose {
    /**
     * thenAccept子任務和父任務公用同一個線程
     */
    @SneakyThrows
    public static void thenRunAsync() {
        CompletableFuture<Integer> cf1 = CompletableFuture.supplyAsync(() -> {
            System.out.println(Thread.currentThread() + " cf1 do something....");
            return 1;
        });
        CompletableFuture<Void> cf2 = cf1.thenRunAsync(() -> {
            System.out.println(Thread.currentThread() + " cf2 do something...");
        });
        //等待任務1執行完成
        System.out.println("cf1結果->" + cf1.get());
        //等待任務2執行完成
        System.out.println("cf2結果->" + cf2.get());
    }

    public static void main(String[] args) {
        thenRunAsync();
    }
}           

不需要顯式使用ExecutorService,CompletableFuture 内部使用了ForkJoinPool來處理異步任務,如果在某些業務場景我們想自定義自己的異步線程池也是可以的。

4、Spring的@Async異步

(1)自定義異步線程池

package org.fiend.async.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.concurrent.Executor;

/**
 * 線程池參數配置,多個線程池實作線程池隔離,@Async注解,預設使用系統自定義線程池,可在項目中設定多個線程池,在異步調用的時候,指明需要調用的線程池名稱,比如:@Async("taskName")
 */
@EnableAsync
@Configuration
public class TaskPoolConfig {
    /**
     * 自定義線程池
     */
    @Bean("taskExecutor")
    public Executor taskExecutor() {
        // 傳回可用處理器的Java虛拟機的數量 12
        int i = Runtime.getRuntime().availableProcessors();
        System.out.println("系統最大線程數  : " + i);
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        // 核心線程池大小
        executor.setCorePoolSize(16);
        // 最大線程數
        executor.setMaxPoolSize(20);
        // 配置隊列容量,預設值為Integer.MAX_VALUE
        executor.setQueueCapacity(99999);
        // 活躍時間
        executor.setKeepAliveSeconds(60);
        // 線程名字字首
        executor.setThreadNamePrefix("asyncServiceExecutor -");
        // 設定此執行程式應該在關閉時阻止的最大秒數,以便在容器的其餘部分繼續關閉之前等待剩餘的任務完成他們的執行
        executor.setAwaitTerminationSeconds(60);
        // 等待所有的任務結束後再關閉線程池
        executor.setWaitForTasksToCompleteOnShutdown(true);
        return executor;
    }
}           

(2) AsyncService

public interface AsyncService {
    MessageResult sendSms(String callPrefix, String mobile, String actionType, String content);
    MessageResult sendEmail(String email, String subject, String content);
}

@Slf4j
@Service
public class AsyncServiceImpl implements AsyncService {
    @Autowired
    private IMessageHandler mesageHandler;

    @Override
    @Async("taskExecutor")
    public MessageResult sendSms(String callPrefix, String mobile, String actionType, String content) {
        try {
            Thread.sleep(1000);
            mesageHandler.sendSms(callPrefix, mobile, actionType, content);

        } catch (Exception e) {
            log.error("發送短信異常 -> ", e)
        }
    }
    
    @Override
    @Async("taskExecutor")
    public sendEmail(String email, String subject, String content) {
        try {
            Thread.sleep(1000);
            mesageHandler.sendsendEmail(email, subject, content);
        } catch (Exception e) {
            log.error("發送email異常 -> ", e)
        }
    }
}           
在實際項目中, 使用@Async調用線程池,推薦等方式是是使用自定義線程池的模式,不推薦直接使用@Async直接實作異步。

5、Spring ApplicationEvent事件實作異步

(1)定義事件

public class AsyncSendEmailEvent extends ApplicationEvent {
    /**
     * 郵箱
     **/
    private String email;
   /**
     * 主題
     **/
    private String subject;
    /**
     * 内容
     **/
    private String content;
  
    /**
     * 接收者
     **/
    private String targetUserId;
}           

(2)定義事件處理器

@Slf4j
@Component
public class AsyncSendEmailEventHandler implements ApplicationListener<AsyncSendEmailEvent> {

    @Autowired
    private IMessageHandler mesageHandler;
    
    @Async("taskExecutor")
    @Override
    public void onApplicationEvent(AsyncSendEmailEvent event) {
        if (event == null) {
            return;
        }

        String email = event.getEmail();
        String subject = event.getSubject();
        String content = event.getContent();
        String targetUserId = event.getTargetUserId();
        mesageHandler.sendsendEmailSms(email, subject, content, targerUserId);
      }
}           
另外,可能有些時候采用ApplicationEvent實作異步的使用,當程式出現異常錯誤的時候,需要考慮補償機制,那麼這時候可以結合Spring Retry重試來幫助我們避免這種異常造成資料不一緻問題。

6、消息隊列

(1)回調事件消息生産者

@Slf4j
@Component
public class CallbackProducer {
    @Autowired
    AmqpTemplate amqpTemplate;

    public void sendCallbackMessage(CallbackDTO allbackDTO, final long delayTimes) {

        log.info("生産者發送消息,callbackDTO,{}", callbackDTO);

        amqpTemplate.convertAndSend(CallbackQueueEnum.QUEUE_GENSEE_CALLBACK.getExchange(), CallbackQueueEnum.QUEUE_GENSEE_CALLBACK.getRoutingKey(), JsonMapper.getInstance().toJson(genseeCallbackDTO), new MessagePostProcessor() {
            @Override
            public Message postProcessMessage(Message message) throws AmqpException {
                //給消息設定延遲毫秒值,通過給消息設定x-delay頭來設定消息從交換機發送到隊列的延遲時間
                message.getMessageProperties().setHeader("x-delay", delayTimes);
                message.getMessageProperties().setCorrelationId(callbackDTO.getSdkId());
                return message;
            }
        });
    }
}           

(2)回調事件消息消費者​​​​​​

@Slf4j
@Component
@RabbitListener(queues = "message.callback", containerFactory = "rabbitListenerContainerFactory")
public class CallbackConsumer {

    @Autowired
    private IGlobalUserService globalUserService;

    @RabbitHandler
    public void handle(String json, Channel channel, @Headers Map<String, Object> map) throws Exception {

        if (map.get("error") != null) {
            //否認消息
            channel.basicNack((Long) map.get(AmqpHeaders.DELIVERY_TAG), false, true);
            return;
        }

        try {
        
            CallbackDTO callbackDTO = JsonMapper.getInstance().fromJson(json, CallbackDTO.class);
            //執行業務邏輯
            globalUserService.execute(callbackDTO);
            //消息消息成功手動确認,對應消息确認模式acknowledge-mode: manual
            channel.basicAck((Long) map.get(AmqpHeaders.DELIVERY_TAG), false);

        } catch (Exception e) {
            log.error("回調失敗 -> {}", e);
        }
    }
}           

7、ThreadUtil異步工具類

@Slf4j
public class ThreadUtils {
    public static void main(String[] args) {
        for (int i = 0; i < 3; i++) {
            ThreadUtil.execAsync(() -> {
                ThreadLocalRandom threadLocalRandom = ThreadLocalRandom.current();
                int number = threadLocalRandom.nextInt(20) + 1;
                System.out.println(number);
            });
            log.info("目前第:" + i + "個線程");
        }

        log.info("task finish!");
    }
}           

8、Guava異步

Guava的ListenableFuture顧名思義就是可以監聽的Future,是對java原生Future的擴充增強。Future表示一個異步計算任務,當任務完成時可以得到計算結果。如果希望一旦計算完成就拿到結果展示給使用者或者做另外的計算,就必須使用另一個線程不斷的查詢計算狀态。這樣做,代碼複雜,而且效率低下。使用「Guava ListenableFuture」可以幫檢測Future是否完成,不需要再通過get()方法等待異步的計算結果,如果完成就自動調用回調函數,這樣可以減少并發程式的複雜度。

ListenableFuture是一個接口,它從jdk的Future接口繼承,添加了void addListener(Runnable listener, Executor executor)方法。

看下如何使用ListenableFuture。首先需要定義ListenableFuture的執行個體:​​​​​​​

ListeningExecutorService executorService = MoreExecutors.listeningDecorator(Executors.newCachedThreadPool());
	final ListenableFuture<Integer> listenableFuture = executorService.submit(new Callable<Integer>() {
		@Override
		public Integer call() throws Exception {
			log.info("callable execute...")
			TimeUnit.SECONDS.sleep(1);
			return 1;
		}
	}
);           

首先通過MoreExecutors類的靜态方法listeningDecorator方法初始化一個ListeningExecutorService的方法,然後使用此執行個體的submit方法即可初始化ListenableFuture對象。

ListenableFuture要做的工作,在Callable接口的實作類中定義,這裡隻是休眠了1秒鐘然後傳回一個數字1,有了ListenableFuture執行個體,可以執行此Future并執行Future完成之後的回調函數。

Futures.addCallback(listenableFuture, new FutureCallback<Integer>() {
    @Override
    public void onSuccess(Integer result) {
        //成功執行...
        System.out.println("Get listenable future's result with callback " + result);
    }

    @Override
    public void onFailure(Throwable t) {
        //異常情況處理...
        t.printStackTrace();
    }
});