天天看點

Linux/Android——input子系統核心 (三)

   之前的部落格有涉及到linux的input子系統,這裡學習記錄一下input子產品.

input子系統,作為管理輸入裝置與系統進行互動的中樞,任何的輸入裝置驅動都要通過input向核心注冊其裝置,

常用的輸入裝置也就是滑鼠,鍵盤,觸摸屏。

稍微細分一點整個輸入體系,就是 硬體驅動層,input核心中轉層,事件處理層.層次之間傳遞都以event事件的形式,這其中input連接配接上下層,分别提供接口.

之前有分析usbtouchscreen的驅動,也就是硬體驅動部分,這裡簡單記錄一下input核心中轉處理 input.c .

                                              撰寫不易,轉載需注明出處:http://blog.csdn.net/jscese/article/details/42123673

input_init:

 源碼位于/kernel/drivers/input/input.c ,子產品初始調用口subsys_initcall(input_init),

由kernel啟動的時候由kernel_init——>do_basic_setup();——>do_initcalls調用到,這個啟動邏輯,後續有機會去學習一下,

這裡首先調用到初始函數:

static int __init input_init(void)
{
    int err;

    err = class_register(&input_class); //注冊input class,可在/sys/class下看到對應節點檔案
    if (err) {
        pr_err("unable to register input_dev class\n");
        return err;
    }

    err = input_proc_init(); //proc fs的下的一些初始操作,函數原型在input.c,可檢視/proc/bus/input
    if (err)
        goto fail1;

    err = register_chrdev(INPUT_MAJOR, "input", &input_fops); // 注冊input字元裝置,主節點為INPUT_MAJOR==13,可以去input_fops裡看注冊函數,注冊到/dev/input
    if (err) {
        pr_err("unable to register char major %d", INPUT_MAJOR);
        goto fail2;
    }

    return 0;

 fail2:    input_proc_exit();
 fail1:    class_unregister(&input_class);
    return err;
}
           

這就是最開始的初始化過程了.

可以看下注冊方法函數:

static const struct file_operations input_fops = {
    .owner = THIS_MODULE,
    .open = input_open_file,
    .llseek = noop_llseek,
};
           

這裡面關注open file方法即可,後面分析。

input.c中還有很多其它的接口以及全局資料,後面陸續聯通,先從裝置驅動最先調用到的注冊 input_register_device

input_register_device:

/**
 * input_register_device - register device with input core
 * @dev: device to be registered
 *
 * This function registers device with input core. The device must be
 * allocated with input_allocate_device() and all it's capabilities
 * set up before registering.
 * If function fails the device must be freed with input_free_device().
 * Once device has been successfully registered it can be unregistered
 * with input_unregister_device(); input_free_device() should not be
 * called in this case.
 */

int input_register_device(struct input_dev *dev)
{
    static atomic_t input_no = ATOMIC_INIT(0);  
        //這個原子變量,代表總共注冊的input裝置,每注冊一個加1,因為是靜态變量,是以每次調用都不會清零的
    struct input_handler *handler;
    const char *path;
    int error;

    __set_bit(EV_SYN, dev->evbit);  //EN_SYN 這個是裝置都要支援的事件類型,是以要設定

    /*
     * If delay and period are pre-set by the driver, then autorepeating
     * is handled by the driver itself and we don't do it in input.c.
     */
        // 這個核心定時器是為了重複按鍵而設定的
    init_timer(&dev->timer);
    if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
        dev->timer.data = (long) dev;
        dev->timer.function = input_repeat_key;
        dev->rep[REP_DELAY] = 250;
        dev->rep[REP_PERIOD] = 33;
        //如果沒有定義有關重複按鍵的相關值,就用核心預設的
    }

    if (!dev->getkeycode)
        dev->getkeycode = input_default_getkeycode;
    if (!dev->setkeycode)
        dev->setkeycode = input_default_setkeycode;
        //以上設定的預設函數由input核心提供
    dev_set_name(&dev->dev, "input%ld",
             (unsigned long) atomic_inc_return(&input_no) - 1);
        //設定input_dev中device的名字,這個名字會在/class/input中出現
    error = device_add(&dev->dev);
        //将device加入到linux裝置模型中去
    if (error)
        return error;

    path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    printk(KERN_INFO "input: %s as %s\n",
        dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
    kfree(path);
        //這個得到路徑名稱,并列印出來
    error = mutex_lock_interruptible(&input_mutex);
    if (error) {
        device_del(&dev->dev);
        return error;
    }

    list_add_tail(&dev->node, &input_dev_list);
        // 将新配置設定的input裝置連接配接到input_dev_list連結清單上
    list_for_each_entry(handler, &input_handler_list, node)
        input_attach_handler(dev, handler);
        //周遊input_handler_list連結清單,配對 input_dev 和 input_handler
        //input_attach_handler 這個函數是配對的關鍵,下面将詳細分析
    input_wakeup_procfs_readers();
        // 和proc檔案系統有關,暫時不考慮
    mutex_unlock(&input_mutex);

    return 0;
   }
           

可以看到前面都是一些初始設定,加入到input.c 的全局input_dev 連結清單裡面,同時下面就行比對對應handler的時候需要周遊 handler 連結清單:

static LIST_HEAD(input_dev_list);
static LIST_HEAD(input_handler_list);
           

可以看到用到了一個 list_for_each_entry, 剛開始看到還沒看懂,這是一個宏定義,原型是在/kernel/include/linux/list.h:

/**
 * list_for_each_entry    -    iterate over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)                \
    for (pos = list_entry((head)->next, typeof(*pos), member);    \
         &pos->member != (head);     \    //就是個for循環,跳出條件周遊了一遍,又回到連結清單頭
         pos = list_entry(pos->member.next, typeof(*pos), member))
           

input_attach_handler(dev, handler)則是比對這個要注冊dev的handler:

static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
    const struct input_device_id *id;
    int error;

    id = input_match_device(handler, dev); //傳回比對的id,類型是struct input_device_id
    if (!id)
        return -ENODEV;

    error = handler->connect(handler, dev, id); //<span><span class="comment">//配對成功調用handler的connect函數,這個函數在事件處理器中定義,主要生成一個input_handle結構,并初始化,還生成一個事件處理器相關的裝置結構</span></span>
    if (error && error != -ENODEV)
        pr_err("failed to attach handler %s to device %s, error: %d\n",
               handler->name, kobject_name(&dev->dev.kobj), error);

    return error;
}
           

可以看下比對 id 的結構:

struct input_device_id {

	kernel_ulong_t flags;

	__u16 bustype;
	__u16 vendor;
	__u16 product;
	__u16 version;

	kernel_ulong_t evbit[INPUT_DEVICE_ID_EV_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t keybit[INPUT_DEVICE_ID_KEY_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t relbit[INPUT_DEVICE_ID_REL_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t absbit[INPUT_DEVICE_ID_ABS_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t mscbit[INPUT_DEVICE_ID_MSC_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t ledbit[INPUT_DEVICE_ID_LED_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t sndbit[INPUT_DEVICE_ID_SND_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t ffbit[INPUT_DEVICE_ID_FF_MAX / BITS_PER_LONG + 1];
	kernel_ulong_t swbit[INPUT_DEVICE_ID_SW_MAX / BITS_PER_LONG + 1];

	kernel_ulong_t driver_info;
};
           

有兩個函數input_match_device 以及 下面的 connect需要了解:

input_match_device:

static const struct input_device_id *input_match_device(struct input_handler *handler,
                            struct input_dev *dev)
{
    const struct input_device_id *id;
    int i;

    for (id = handler->id_table; id->flags || id->driver_info; id++) {

        if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)  //比對總線id
            if (id->bustype != dev->id.bustype)
                continue;

        if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)  //比對生産商id
            if (id->vendor != dev->id.vendor)
                continue;

        if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) //比對産品id
            if (id->product != dev->id.product)
                continue;

        if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) //比對版本
            if (id->version != dev->id.version)
                continue;

        MATCH_BIT(evbit,  EV_MAX);  //比對id的evbit和input_dev中evbit的各個位,如果不比對則continue,數組中下一個裝置
        MATCH_BIT(keybit, KEY_MAX);
        MATCH_BIT(relbit, REL_MAX);
        MATCH_BIT(absbit, ABS_MAX);
        MATCH_BIT(mscbit, MSC_MAX);
        MATCH_BIT(ledbit, LED_MAX);
        MATCH_BIT(sndbit, SND_MAX);
        MATCH_BIT(ffbit,  FF_MAX);
        MATCH_BIT(swbit,  SW_MAX);

        if (!handler->match || handler->match(handler, dev))
            return id;
    }

    return NULL;
}
           

MATCH_bit 原型:

#define MATCH_BIT(bit, max) \
		for (i = 0; i < BITS_TO_LONGS(max); i++) \
			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
				break; \
		if (i != BITS_TO_LONGS(max)) \
			continue;
           

可以看到這麼多步的目的除了初始以及添加input_dev到連結清單,就是為了去比對 input_handler_list 中對應的handler ,

比對的最終是需要比對handler以及input_dev中的 id,其中input_dev 中的id類型為 input_id :

struct input_id {
	__u16 bustype;
	__u16 vendor;
	__u16 product;
	__u16 version;
};
           

這跟上面 input_handler 結構裡面的 input_device_id 比對id 變量,來确認 handler!

在最開始的時候就有提到,整個input輸入體系,分三個層次,現在的input核心層做的事就是:

在硬體驅動層調用 input_register_device時 ,往核心注冊驅動的同時,根據硬體的相關id去比對 适用的事件處理層(input_handler)!

這裡比對上之後就會調用對應 input_handler 的connect 函數。

input_handler:

input_dev 變量代表的是硬體裝置,前文Linux/Android——輸入子系統input_event傳遞 (二)中有介紹

input_handler 變量代表的是事件處理器

同樣在input.h 中定義:

/**
 * struct input_handler - implements one of interfaces for input devices
 * @private: driver-specific data
 * @event: event handler. This method is being called by input core with
 *	interrupts disabled and dev->event_lock spinlock held and so
 *	it may not sleep
 * @filter: similar to @event; separates normal event handlers from
 *	"filters".
 * @match: called after comparing device's id with handler's id_table
 *	to perform fine-grained matching between device and handler
 * @connect: called when attaching a handler to an input device
 * @disconnect: disconnects a handler from input device
 * @start: starts handler for given handle. This function is called by
 *	input core right after connect() method and also when a process
 *	that "grabbed" a device releases it
 * @fops: file operations this driver implements
 * @minor: beginning of range of 32 minors for devices this driver
 *	can provide
 * @name: name of the handler, to be shown in /proc/bus/input/handlers
 * @id_table: pointer to a table of input_device_ids this driver can
 *	handle
 * @h_list: list of input handles associated with the handler
 * @node: for placing the driver onto input_handler_list
 *
 * Input handlers attach to input devices and create input handles. There
 * are likely several handlers attached to any given input device at the
 * same time. All of them will get their copy of input event generated by
 * the device.
 *
 * The very same structure is used to implement input filters. Input core
 * allows filters to run first and will not pass event to regular handlers
 * if any of the filters indicate that the event should be filtered (by
 * returning %true from their filter() method).
 *
 * Note that input core serializes calls to connect() and disconnect()
 * methods.
 */
struct input_handler {

	void *private;

	void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
	bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
	bool (*match)(struct input_handler *handler, struct input_dev *dev);
	int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);  //上面就是調用這個函數指針
	void (*disconnect)(struct input_handle *handle);
	void (*start)(struct input_handle *handle);

	const struct file_operations *fops;
	int minor;
	const char *name;

	const struct input_device_id *id_table; //這個就是上面說到的 會跟input_dev中的input_id 比對 id項的

	struct list_head	h_list;
	struct list_head	node;
};
           

這個結構詳細的含義,注釋有。

這個結構裡面暫時隻需要了解的:

注冊input_dev ,在事件處理資料連結清單裡面比對上 input_handler ,就會調用其 *connect 函數指針 進行連接配接,

将input_dev 跟 input_handler 進行綁定, 後續的運作事件的handler處理将會走這個input_handler的 *event !

在上篇input_event 傳遞中最後調用到event階段.

這裡簡單記錄到這裡,下篇介紹input_handler 的處理機制~

繼續閱讀