NMS都不會,做什麼Detection!
Non-maximum suppression(非極大值抑制)算法
NMS原理:
- 首先得出所有的預測框集合
、 對應框的得分B
, NMS(IoU)門檻值Scores
;T
- 定義存放侯選框的集合
(初始為H
), 對Null
排序選出得分最大的框為Scores
maxBox
,
将
從集合maxBox
中移到集合H中,集合B
中沒有B
框了;maxBox
- 計算
和maxBox
中剩餘的所有框的IoU, 将IoU大于B
的從T
中删除(認為和B
重疊了);maxBox
- 重複2~3步驟,直到集合
為B
Null
, 集合H中存放的框就是NMS處理的結果;
重複步驟是:
(1)對集合B中剩餘框對應的得分進行排序, 選出最大得分的框maxBox,并從集合B中移到集合H中。
(2) 計算這個得分最大的框maxBox和集合B中框的IoU門檻值,将大于IoU門檻值的框從B中删除。
NMS代碼實作
1. Pytorch代碼實作
from torch import Tensor
import torch
def box_area(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by its
(x1, y1, x2, y2) coordinates.
Arguments:
boxes (Tensor[N, 4]): boxes for which the area will be computed. They
are expected to be in (x1, y1, x2, y2) format
Returns:
area (Tensor[N]): area for each box
"""
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
boxes1 (Tensor[N, 4])
boxes2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
"""
area1 = box_area(boxes1) # 每個框的面積 (N,)
area2 = box_area(boxes2) # (M,)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] # N中一個和M個比較; 是以由N,M 個
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2] #小于0的為0 clamp 鉗;夾鉗;
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
iou = inter / (area1[:, None] + area2 - inter)
return iou # NxM, boxes1中每個框和boxes2中每個框的IoU值;
def nms(boxes: Tensor, scores: Tensor, iou_threshold: float):
"""
:param boxes: [N, 4], 此處傳進來的框,是經過篩選(NMS之前選取過得分TopK)之後, 在傳入之前處理好的;
:param scores: [N]
:param iou_threshold: 0.7
:return:
"""
keep = [] # 最終保留的結果, 在boxes中對應的索引;
idxs = scores.argsort() # 值從小到大的 索引
while idxs.numel() > 0: # 循環直到null; numel(): 數組元素個數
# 得分最大框對應的索引, 以及對應的坐标
max_score_index = idxs[-1]
max_score_box = boxes[max_score_index][None, :] # [1, 4]
keep.append(max_score_index)
if idxs.size(0) == 1: # 就剩餘一個框了;
break
idxs = idxs[:-1] # 将得分最大框 從索引中删除; 剩餘索引對應的框 和 得分最大框 計算IoU;
other_boxes = boxes[idxs] # [?, 4]
ious = box_iou(max_score_box, other_boxes) # 一個框和其餘框比較 1XM
idxs = idxs[ious[0] <= iou_threshold]
keep = idxs.new(keep) # Tensor
return keep
2. Pytorch代碼實作
import torch
def nms(boxes, scores, overlap=0.7, top_k=200):
"""
輸入:
boxes: 存儲一個圖檔的所有預測框。[num_positive,4].
scores:置信度。如果為多分類則需要将nms函數套在一個循環内。[num_positive].
overlap: nms抑制時iou的門檻值.
top_k: 先選取置信度前top_k個框再進行nms.
傳回:
nms後剩餘預測框的索引.
"""
keep = scores.new(scores.size(0)).zero_().long()
# 儲存留下來的box的索引 [num_positive]
# 函數new(): 建構一個有相同資料類型的tensor
# 如果輸入box為空則傳回空Tensor
if boxes.numel() == 0:
return keep
x1 = boxes[:, 0] # x1 坐标
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = torch.mul(x2 - x1, y2 - y1) # 并行化計算所有框的面積
v, idx = scores.sort(0) # 升序排序
idx = idx[-top_k:] # 前top-k的索引,從小到大
xx1 = boxes.new()
yy1 = boxes.new()
xx2 = boxes.new() # new() 無參數,建立 相同類型的空值;
yy2 = boxes.new()
w = boxes.new()
h = boxes.new()
count = 0
while idx.numel() > 0:
i = idx[-1] # 目前最大score對應的索引 # 選取得分最大的框索引;
keep[count] = i # 存儲在keep中
count += 1
if idx.size(0) == 1: # 跳出循環條件:box被篩選完了
break
idx = idx[:-1] # 去掉最後一個
# 剩下boxes的資訊存儲在xx,yy中
torch.index_select(x1, 0, idx, out=xx1) # 從x1中再次元0選取索引為idx 資料 輸出到xx1中;
torch.index_select(y1, 0, idx, out=yy1) # torch.index_select() # 從tensor中按指定次元和索引 取值;
torch.index_select(x2, 0, idx, out=xx2)
torch.index_select(y2, 0, idx, out=yy2)
# 計算目前最大置信框與其他剩餘框的交集,不知道clamp的同學确實容易被誤導
xx1 = torch.clamp(xx1, min=x1[i]) # max(x1,xx1) # x1 y1 的最大值
yy1 = torch.clamp(yy1, min=y1[i]) # max(y1,yy1)
xx2 = torch.clamp(xx2, max=x2[i]) # min(x2,xx2) # x2 x3 最小值;
yy2 = torch.clamp(yy2, max=y2[i]) # min(y2,yy2)
w.resize_as_(xx2)
h.resize_as_(yy2)
w = xx2 - xx1 # w=min(x2,xx2)−max(x1,xx1)
h = yy2 - yy1 # h=min(y2,yy2)−max(y1,yy1)
w = torch.clamp(w, min=0.0) # max(w,0)
h = torch.clamp(h, min=0.0) # max(h,0)
inter = w * h
# 計算目前最大置信框與其他剩餘框的IOU
# IoU = i / (area(a) + area(b) - i)
rem_areas = torch.index_select(area, 0, idx) # 剩餘的框的面積
union = rem_areas + area[i] - inter # 并集
IoU = inter / union # 計算iou
# 選出IoU <= overlap的boxes(注意le函數的使用)
idx = idx[IoU.le(overlap)] # le: 小于等于 傳回的bool , 去除大于overlap的值;
return keep, count
參考自:連結
3. Numpy代碼實作
import numpy as np
from numpy import array
def box_area(boxes :array):
"""
:param boxes: [N, 4]
:return: [N]
"""
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def box_iou(box1 :array, box2: array):
"""
:param box1: [N, 4]
:param box2: [M, 4]
:return: [N, M]
"""
area1 = box_area(box1) # N
area2 = box_area(box2) # M
# broadcasting, 兩個數組各次元大小 從後往前對比一緻, 或者 有一次元值為1;
lt = np.maximum(box1[:, np.newaxis, :2], box2[:, :2])
rb = np.minimum(box1[:, np.newaxis, 2:], box2[:, 2:])
wh = rb - lt
wh = np.maximum(0, wh) # [N, M, 2]
inter = wh[:, :, 0] * wh[:, :, 1]
iou = inter / (area1[:, np.newaxis] + area2 - inter)
return iou # NxM
def numpy_nms(boxes :array, scores :array, iou_threshold :float):
idxs = scores.argsort() # 按分數 降序排列的索引 [N]
keep = []
while idxs.size > 0: # 統計數組中元素的個數
max_score_index = idxs[-1]
max_score_box = boxes[max_score_index][None, :]
keep.append(max_score_index)
if idxs.size == 1:
break
idxs = idxs[:-1] # 将得分最大框 從索引中删除; 剩餘索引對應的框 和 得分最大框 計算IoU;
other_boxes = boxes[idxs] # [?, 4]
ious = box_iou(max_score_box, other_boxes) # 一個框和其餘框比較 1XM
idxs = idxs[ious[0] <= iou_threshold]
keep = np.array(keep) # Tensor
return keep
Soft NMS原理和代碼
Soft-NMS的原理
原理步驟:
- 首先得出所有的預測框集合
、 對應框的得分B
, NMS(IoU)門檻值Scores
;T
- 定義存放侯選框的集合
(初始為H
),對Null
排序選出得分最大的框為Scores
, 将maxBox
從集合maxBox
中移到集合H中,集合B
中沒有B
框了;maxBox
- 計算
和maxBox
中剩餘的所有框的IoU, 将IoU大于B
的框的得分 按某種方式 降低(不删除了),T
- 重複2~3步驟,直到集合
為B
Null
, 集合H中存放的框就是Soft-NMS處理的結果;
重複步驟是:
(1)對集合B中剩餘框對應的得分進行排序(
因為分數變化,必須排序
), 選出最大得分的框maxBox,并從集合B中移到集合H中。
(2) 計算這個得分最大的框maxBox和集合B中框的IoU門檻值,将大于IoU門檻值的框對應的得分降低。
- Soft-NMS傳回的結果是 框以及框對應的得分(得分是Soft-NMS抑制後的),說白了,就是抑制了框對應的得分, 使用時需要一個得分門檻值。
NMS和Soft-NMS的原理和Pytorch代碼實作NMS都不會,做什麼Detection!Soft-NMS的原理
Soft-NMS權重函數的形式
M M M表示得分最大框, b i b_i bi是除去得分最大框後剩餘的每個框。
原來的NMS可以描述如下:将IoU大于門檻值的視窗的得分全部置為0。
s i = { s i , i o u ( M , b i ) < T 0 , i o u ( M , b i ) > = T s_i = \left\{ \begin{array}{lr}s_i, iou(M,b_i) < T \\ 0, iou(M,b_i) >= T \end{array} \right. si={si,iou(M,bi)<T0,iou(M,bi)>=T
(1) 線性權重抑制得分
s i = { s i , i o u ( M , b i ) < T s i ( 1 − i o u ( M , b i ) ) , i o u ( M , b i ) > = T s_i = \left\{ \begin{array}{lr}s_i, iou(M,b_i) < T \\ s_i(1 - iou(M, b_i)), iou(M,b_i) > =T \end{array} \right. si={si,iou(M,bi)<Tsi(1−iou(M,bi)),iou(M,bi)>=T
(2) 高斯權重抑制得分
s i = s i e − i o u ( M , b i ) 2 σ , ∀ b i ∉ D s_i = s_ie^{-\frac{iou(M, b_i)^2}{\sigma}}, \forall b_i \notin D si=sie−σiou(M,bi)2,∀bi∈/D
NMS-Soft 實作代碼
Pytorch 代碼 未驗證 沒有合适比較代碼【歡迎指正錯誤】
from torch import Tensor
import torch
def box_area(boxes: Tensor) -> Tensor:
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
area1 = box_area(boxes1) # 每個框的面積 (N,)
area2 = box_area(boxes2) # (M,)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] # N中一個和M個比較; 是以由N,M 個
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2] # 删除面積小于0 不相交的 clamp 鉗;夾鉗;
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] # 切片的用法 相乘次元減1
iou = inter / (area1[:, None] + area2 - inter)
return iou # NxM, boxes1中每個框和boxes2中每個框的IoU值;
def soft_nms(boxes: Tensor, scores: Tensor, soft_threshold=0.01, iou_threshold=0.7, weight_method=2, sigma=0.5):
"""
:param boxes: [N, 4], 此處傳進來的框,是經過篩選(選取的得分TopK)之後的
:param scores: [N]
:param iou_threshold: 0.7
:param soft_threshold soft nms 過濾掉得分太低的框 (手動設定)
:param weight_method 權重方法 1. 線性 2. 高斯
:return:
"""
keep = []
idxs = scores.argsort()
while idxs.numel() > 0: # 循環直到null; numel(): 數組元素個數
# 由于scores得分會改變,是以每次都要重新排序,擷取得分最大值
idxs = scores.argsort() # 評分排序
if idxs.size(0) == 1: # 就剩餘一個框了;
keep.append(idxs[-1])
break
keep_len = len(keep)
max_score_index = idxs[-(keep_len + 1)]
max_score_box = boxes[max_score_index][None, :] # [1, 4]
idxs = idxs[:-(keep_len + 1)]
other_boxes = boxes[idxs] # [?, 4]
keep.append(max_score_index) # 位置不能邊
ious = box_iou(max_score_box, other_boxes) # 一個框和其餘框比較 1XM
# Soft NMS 處理, 和 得分最大框 IOU大于門檻值的框, 進行得分抑制
if weight_method == 1: # 線性抑制 # 整個過程 隻修改分數
ge_threshod_bool = ious[0] >= iou_threshold
ge_threshod_idxs = idxs[ge_threshod_bool]
scores[ge_threshod_idxs] *= (1. - ious[0][ge_threshod_bool]) # 小于IoU門檻值的不變
# idxs = idxs[scores[idxs] >= soft_threshold] # 小于soft_threshold删除, 經過抑制後 門檻值會越來越小;
elif weight_method == 2: # 高斯抑制, 不管大不大于門檻值,都計算權重
scores[idxs] *= torch.exp(-(ious[0] * ious[0]) / sigma) # 權重(0, 1]
# idxs = idxs[scores[idxs] >= soft_threshold]
# else: # NMS
# idxs = idxs[ious[0] <= iou_threshold]
# keep = scores[scores > soft_threshold].int()
keep = idxs.new(keep) # Tensor
keep = keep[scores[keep] > soft_threshold] # 最後處理門檻值
boxes = boxes[keep] # 保留下來的框
scores = scores[keep] # soft nms抑制後得分
return boxes, scores
對應代碼和測試在NMS_SoftNMS項目,歡迎指正!