今天,我結合代碼來詳細介紹如何使用 SciSharp STACK 的 TensorFlow.NET 來訓練CNN模型,該模型主要實作 圖像的分類 ,可以直接移植該代碼在 CPU 或 GPU 下使用,并針對你們自己本地的圖像資料集進行訓練和推理。TensorFlow.NET是基于 .NET Standard 架構的完整實作的TensorFlow,可以支援
.NET Framework
或
.NET CORE
, TensorFlow.NET 為廣大.NET開發者提供了完美的機器學習架構選擇。
SciSharp STACK:https://github.com/SciSharp
什麼是TensorFlow.NET?
TensorFlow.NET 是 SciSharp STACK

開源社群團隊的貢獻,其使命是打造一個完全屬于.NET開發者自己的機器學習平台,特别對于C#開發人員來說,是一個“0”學習成本的機器學習平台,該平台內建了大量API和底層封裝,力圖使TensorFlow的Python代碼風格和程式設計習慣可以無縫移植到.NET平台,下圖是同樣TF任務的Python實作和C#實作的文法相似度對比,從中讀者基本可以略窺一二。
由于TensorFlow.NET在.NET平台的優秀性能,同時搭配SciSharp的NumSharp、SharpCV、Pandas.NET、Keras.NET、Matplotlib.Net等子產品,可以完全脫離Python環境使用,目前已經被微軟ML.NET官方的底層算法內建,并被谷歌寫入TensorFlow官網教程推薦給全球開發者。
· SciSharp 産品結構
· 微軟 ML.NET底層內建算法
· 谷歌官方推薦.NET開發者使用
URL: https://www.tensorflow.org/versions/r2.0/api_docs
項目說明
本文利用TensorFlow.NET建構簡單的圖像分類模型,針對工業現場的印刷字元進行單字元OCR識别,從工業相機擷取原始大尺寸的圖像,前期使用OpenCV進行圖像預處理和字元分割,提取出單個字元的小圖,送入TF進行推理,推理的結果按照順序組合成完整的字元串,傳回至主程式邏輯進行後續的生産線工序。
實際使用中,如果你們需要訓練自己的圖像,隻需要把訓練的檔案夾按照規定的順序替換成你們自己的圖檔即可。支援GPU或CPU方式,該項目的完整代碼在GitHub如下:
https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/src/TensorFlowNET.Examples/ImageProcessing/CnnInYourOwnData.cs
模型介紹
本項目的CNN模型主要由 2個卷積層&池化層 和 1個全連接配接層 組成,激活函數使用常見的Relu,是一個比較淺的卷積神經網絡模型。其中超參數之一"學習率",采用了自定義的動态下降的學習率,後面會有詳細說明。具體每一層的Shape參考下圖:
資料集說明
為了模型測試的訓練速度考慮,圖像資料集主要節選了一小部分的OCR字元(X、Y、Z),資料集的特征如下:
· 分類數量:3 classes 【X/Y/Z】
· 圖像尺寸:Width 64 × Height 64
· 圖像通道:1 channel(灰階圖)
· 資料集數量:
o train:X - 384pcs ;Y - 384pcs ;Z - 384pcs
o validation:X - 96pcs ;Y - 96pcs ;Z - 96pcs
o test:X - 96pcs ;Y - 96pcs ;Z - 96pcs
· 其它說明:資料集已經經過 随機 翻轉/平移/縮放/鏡像 等預處理進行增強
· 整體資料集情況如下圖所示:
在這裡插入圖檔描述
在這裡插入圖檔描述
代碼說明
環境設定
· .NET 架構:使用.NET Framework 4.7.2及以上,或者使用.NET CORE 2.2及以上
· CPU 配置:Any CPU 或 X64 皆可
· GPU 配置:需要自行配置好CUDA和環境變量,建議 CUDA v10.1,Cudnn v7.5
類庫和命名空間引用
1. 從NuGet安裝必要的依賴項,主要是SciSharp相關的類庫,如下圖所示:
注意事項:盡量安裝最新版本的類庫,CV須使用 SciSharp 的 SharpCV 友善内部變量傳遞
<PackageReference Include="Colorful.Console" Version="1.2.9" />
<PackageReference Include="Newtonsoft.Json" Version="12.0.3" />
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="1.15.0" />
<PackageReference Include="SciSharp.TensorFlowHub" Version="0.0.5" />
<PackageReference Include="SharpCV" Version="0.2.0" />
<PackageReference Include="SharpZipLib" Version="1.2.0" />
<PackageReference Include="System.Drawing.Common" Version="4.7.0" />
<PackageReference Include="TensorFlow.NET" Version="0.14.0" />
複制
2. 引用命名空間,包括 NumSharp、Tensorflow 和 SharpCV ;
using NumSharp;
using NumSharp.Backends;
using NumSharp.Backends.Unmanaged;
using SharpCV;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Runtime.CompilerServices;
using Tensorflow;
using static Tensorflow.Binding;
using static SharpCV.Binding;
using System.Collections.Concurrent;
using System.Threading.Tasks;
複制
主邏輯結構
主邏輯:
1. 準備資料
2. 建立計算圖
3. 訓練
4. 預測
public bool Run()
{
PrepareData();
BuildGraph();
using (var sess = tf.Session())
{
Train(sess);
Test(sess);
}
TestDataOutput();
return accuracy_test > 0.98;
}
複制
資料集載入
資料集下載下傳和解壓
· 資料集位址:
https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/data/data_CnnInYourOwnData.zip
· 資料集下載下傳和解壓代碼 ( 部分封裝的方法請參考 GitHub完整代碼 ):
· string url = "https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/data/data_CnnInYourOwnData.zip";
· Directory.CreateDirectory(Name);
· Utility.Web.Download(url, Name, "data_CnnInYourOwnData.zip");
· Utility.Compress.UnZip(Name + "\\data_CnnInYourOwnData.zip", Name);
複制
字典建立
讀取目錄下的子檔案夾名稱,作為分類的字典,友善後面One-hot使用
private void FillDictionaryLabel(string DirPath)
{
string[] str_dir = Directory.GetDirectories(DirPath, "*", SearchOption.TopDirectoryOnly);
int str_dir_num = str_dir.Length;
if (str_dir_num > 0)
{
Dict_Label = new Dictionary<Int64, string>();
for (int i = 0; i < str_dir_num; i++)
{
string label = (str_dir[i].Replace(DirPath + "\\", "")).Split('\\').First();
Dict_Label.Add(i, label);
print(i.ToString() + " : " + label);
}
n_classes = Dict_Label.Count;
}
}
複制
檔案List讀取和打亂
從檔案夾中讀取train、validation、test的list,并随機打亂順序。
- 讀取目錄
ArrayFileName_Train = Directory.GetFiles(Name + "\\train", "*.*", SearchOption.AllDirectories);
ArrayLabel_Train = GetLabelArray(ArrayFileName_Train);
ArrayFileName_Validation = Directory.GetFiles(Name + "\\validation", "*.*", SearchOption.AllDirectories);
ArrayLabel_Validation = GetLabelArray(ArrayFileName_Validation);
ArrayFileName_Test = Directory.GetFiles(Name + "\\test", "*.*", SearchOption.AllDirectories);
ArrayLabel_Test = GetLabelArray(ArrayFileName_Test);
複制
- 獲得标簽
private Int64[] GetLabelArray(string[] FilesArray)
{
Int64[] ArrayLabel = new Int64[FilesArray.Length];
for (int i = 0; i < ArrayLabel.Length; i++)
{
string[] labels = FilesArray[i].Split('\\');
string label = labels[labels.Length - 2];
ArrayLabel[i] = Dict_Label.Single(k => k.Value == label).Key;
}
return ArrayLabel;
}
複制
- 随機亂序
public (string[], Int64[]) ShuffleArray(int count, string[] images, Int64[] labels)
{
ArrayList mylist = new ArrayList();
string[] new_images = new string[count];
Int64[] new_labels = new Int64[count];
Random r = new Random();
for (int i = 0; i < count; i++)
{
mylist.Add(i);
}
for (int i = 0; i < count; i++)
{
int rand = r.Next(mylist.Count);
new_images[i] = images[(int)(mylist[rand])];
new_labels[i] = labels[(int)(mylist[rand])];
mylist.RemoveAt(rand);
}
print("shuffle array list:" + count.ToString());
return (new_images, new_labels);
}
複制
部分資料集預先載入
Validation/Test資料集和标簽一次性預先載入成NDArray格式。
private void LoadImagesToNDArray()
{
//Load labels
y_valid = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Validation)];
y_test = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Test)];
print("Load Labels To NDArray : OK!");
//Load Images
x_valid = np.zeros(ArrayFileName_Validation.Length, img_h, img_w, n_channels);
x_test = np.zeros(ArrayFileName_Test.Length, img_h, img_w, n_channels);
LoadImage(ArrayFileName_Validation, x_valid, "validation");
LoadImage(ArrayFileName_Test, x_test, "test");
print("Load Images To NDArray : OK!");
}
private void LoadImage(string[] a, NDArray b, string c)
{
for (int i = 0; i < a.Length; i++)
{
b[i] = ReadTensorFromImageFile(a[i]);
Console.Write(".");
}
Console.WriteLine();
Console.WriteLine("Load Images To NDArray: " + c);
}
private NDArray ReadTensorFromImageFile(string file_name)
{
using (var graph = tf.Graph().as_default())
{
var file_reader = tf.read_file(file_name, "file_reader");
var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: n_channels, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { img_h, img_w });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { img_mean });
var normalized = tf.divide(sub, new float[] { img_std });
using (var sess = tf.Session(graph))
{
return sess.run(normalized);
}
}
}
複制
計算圖建構
建構CNN靜态計算圖,其中學習率每n輪Epoch進行1次遞減。
#region BuildGraph
public Graph BuildGraph()
{
var graph = new Graph().as_default();
tf_with(tf.name_scope("Input"), delegate
{
x = tf.placeholder(tf.float32, shape: (-1, img_h, img_w, n_channels), name: "X");
y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y");
});
var conv1 = conv_layer(x, filter_size1, num_filters1, stride1, name: "conv1");
var pool1 = max_pool(conv1, ksize: 2, stride: 2, name: "pool1");
var conv2 = conv_layer(pool1, filter_size2, num_filters2, stride2, name: "conv2");
var pool2 = max_pool(conv2, ksize: 2, stride: 2, name: "pool2");
var layer_flat = flatten_layer(pool2);
var fc1 = fc_layer(layer_flat, h1, "FC1", use_relu: true);
var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false);
//Some important parameter saved with graph , easy to load later
var img_h_t = tf.constant(img_h, name: "img_h");
var img_w_t = tf.constant(img_w, name: "img_w");
var img_mean_t = tf.constant(img_mean, name: "img_mean");
var img_std_t = tf.constant(img_std, name: "img_std");
var channels_t = tf.constant(n_channels, name: "img_channels");
//learning rate decay
gloabl_steps = tf.Variable(0, trainable: false);
learning_rate = tf.Variable(learning_rate_base);
//create train images graph
tf_with(tf.variable_scope("LoadImage"), delegate
{
decodeJpeg = tf.placeholder(tf.@byte, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { img_h, img_w });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { img_mean });
normalized = tf.divide(sub, new float[] { img_std }, name: "normalized");
});
tf_with(tf.variable_scope("Train"), delegate
{
tf_with(tf.variable_scope("Loss"), delegate
{
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits), name: "loss");
});
tf_with(tf.variable_scope("Optimizer"), delegate
{
optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss, global_step: gloabl_steps);
});
tf_with(tf.variable_scope("Accuracy"), delegate
{
var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred");
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy");
});
tf_with(tf.variable_scope("Prediction"), delegate
{
cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions");
prob = tf.nn.softmax(output_logits, axis: 1, name: "prob");
});
});
return graph;
}
/// <summary>
/// Create a 2D convolution layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="filter_size">size of each filter</param>
/// <param name="num_filters">number of filters(or output feature maps)</param>
/// <param name="stride">filter stride</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor conv_layer(Tensor x, int filter_size, int num_filters, int stride, string name)
{
return tf_with(tf.variable_scope(name), delegate
{
var num_in_channel = x.shape[x.NDims - 1];
var shape = new[] { filter_size, filter_size, num_in_channel, num_filters };
var W = weight_variable("W", shape);
// var tf.summary.histogram("weight", W);
var b = bias_variable("b", new[] { num_filters });
// tf.summary.histogram("bias", b);
var layer = tf.nn.conv2d(x, W,
strides: new[] { 1, stride, stride, 1 },
padding: "SAME");
layer += b;
return tf.nn.relu(layer);
});
}
/// <summary>
/// Create a max pooling layer
/// </summary>
/// <param name="x">input to max-pooling layer</param>
/// <param name="ksize">size of the max-pooling filter</param>
/// <param name="stride">stride of the max-pooling filter</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor max_pool(Tensor x, int ksize, int stride, string name)
{
return tf.nn.max_pool(x,
ksize: new[] { 1, ksize, ksize, 1 },
strides: new[] { 1, stride, stride, 1 },
padding: "SAME",
name: name);
}
/// <summary>
/// Flattens the output of the convolutional layer to be fed into fully-connected layer
/// </summary>
/// <param name="layer">input array</param>
/// <returns>flattened array</returns>
private Tensor flatten_layer(Tensor layer)
{
return tf_with(tf.variable_scope("Flatten_layer"), delegate
{
var layer_shape = layer.TensorShape;
var num_features = layer_shape[new Slice(1, 4)].size;
var layer_flat = tf.reshape(layer, new[] { -1, num_features });
return layer_flat;
});
}
/// <summary>
/// Create a weight variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private RefVariable weight_variable(string name, int[] shape)
{
var initer = tf.truncated_normal_initializer(stddev: 0.01f);
return tf.get_variable(name,
dtype: tf.float32,
shape: shape,
initializer: initer);
}
/// <summary>
/// Create a bias variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private RefVariable bias_variable(string name, int[] shape)
{
var initial = tf.constant(0f, shape: shape, dtype: tf.float32);
return tf.get_variable(name,
dtype: tf.float32,
initializer: initial);
}
/// <summary>
/// Create a fully-connected layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="num_units">number of hidden units in the fully-connected layer</param>
/// <param name="name">layer name</param>
/// <param name="use_relu">boolean to add ReLU non-linearity (or not)</param>
/// <returns>The output array</returns>
private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true)
{
return tf_with(tf.variable_scope(name), delegate
{
var in_dim = x.shape[1];
var W = weight_variable("W_" + name, shape: new[] { in_dim, num_units });
var b = bias_variable("b_" + name, new[] { num_units });
var layer = tf.matmul(x, W) + b;
if (use_relu)
layer = tf.nn.relu(layer);
return layer;
});
}
#endregion
複制
模型訓練和模型儲存
· Batch資料集的讀取,采用了 SharpCV 的cv2.imread,可以直接讀取本地圖像檔案至NDArray,實作CV和Numpy的無縫對接;
· 使用.NET的異步線程安全隊列BlockingCollection,實作TensorFlow原生的隊列管理器FIFOQueue;
-
- 在訓練模型的時候,我們需要将樣本從硬碟讀取到記憶體之後,才能進行訓練。我們在會話中運作多個線程,并加入隊列管理器進行線程間的檔案入隊出隊操作,并限制隊列容量,主線程可以利用隊列中的資料進行訓練,另一個線程進行本地檔案的IO讀取,這樣可以實作資料的讀取和模型的訓練是異步的,降低訓練時間。
· 模型的儲存,可以選擇每輪訓練都儲存,或最佳訓練模型儲存
· #region Train
· public void Train(Session sess)
· {
· // Number of training iterations in each epoch
· var num_tr_iter = (ArrayLabel_Train.Length) / batch_size;
·
· var init = tf.global_variables_initializer();
· sess.run(init);
·
· var saver = tf.train.Saver(tf.global_variables(), max_to_keep: 10);
·
· path_model = Name + "\\MODEL";
· Directory.CreateDirectory(path_model);
·
· float loss_val = 100.0f;
· float accuracy_val = 0f;
·
· var sw = new Stopwatch();
· sw.Start();
· foreach (var epoch in range(epochs))
· {
· print($"Training epoch: {epoch + 1}");
· // Randomly shuffle the training data at the beginning of each epoch
· (ArrayFileName_Train, ArrayLabel_Train) = ShuffleArray(ArrayLabel_Train.Length, ArrayFileName_Train, ArrayLabel_Train);
· y_train = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Train)];
·
· //decay learning rate
· if (learning_rate_step != 0)
· {
· if ((epoch != 0) && (epoch % learning_rate_step == 0))
· {
· learning_rate_base = learning_rate_base * learning_rate_decay;
· if (learning_rate_base <= learning_rate_min) { learning_rate_base = learning_rate_min; }
· sess.run(tf.assign(learning_rate, learning_rate_base));
· }
· }
·
· //Load local images asynchronously,use queue,improve train efficiency
· BlockingCollection<(NDArray c_x, NDArray c_y, int iter)> BlockC = new BlockingCollection<(NDArray C1, NDArray C2, int iter)>(TrainQueueCapa);
· Task.Run(() =>
· {
· foreach (var iteration in range(num_tr_iter))
· {
· var start = iteration * batch_size;
· var end = (iteration + 1) * batch_size;
· (NDArray x_batch, NDArray y_batch) = GetNextBatch(sess, ArrayFileName_Train, y_train, start, end);
· BlockC.Add((x_batch, y_batch, iteration));
· }
· BlockC.CompleteAdding();
· });
·
· foreach (var item in BlockC.GetConsumingEnumerable())
· {
· sess.run(optimizer, (x, item.c_x), (y, item.c_y));
·
· if (item.iter % display_freq == 0)
· {
· // Calculate and display the batch loss and accuracy
· var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, item.c_x), new FeedItem(y, item.c_y));
· loss_val = result[0];
· accuracy_val = result[1];
· print("CNN:" + ($"iter {item.iter.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")} {sw.ElapsedMilliseconds}ms"));
· sw.Restart();
· }
· }
·
· // Run validation after every epoch
· (loss_val, accuracy_val) = sess.run((loss, accuracy), (x, x_valid), (y, y_valid));
· print("CNN:" + "---------------------------------------------------------");
· print("CNN:" + $"gloabl steps: {sess.run(gloabl_steps) },learning rate: {sess.run(learning_rate)}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}");
· print("CNN:" + "---------------------------------------------------------");
·
· if (SaverBest)
· {
· if (accuracy_val > max_accuracy)
· {
· max_accuracy = accuracy_val;
· saver.save(sess, path_model + "\\CNN_Best");
· print("CKPT Model is save.");
· }
· }
· else
· {
· saver.save(sess, path_model + string.Format("\\CNN_Epoch_{0}_Loss_{1}_Acc_{2}", epoch, loss_val, accuracy_val));
· print("CKPT Model is save.");
· }
· }
· Write_Dictionary(path_model + "\\dic.txt", Dict_Label);
· }
· private void Write_Dictionary(string path, Dictionary<Int64, string> mydic)
· {
· FileStream fs = new FileStream(path, FileMode.Create);
· StreamWriter sw = new StreamWriter(fs);
· foreach (var d in mydic) { sw.Write(d.Key + "," + d.Value + "\r\n"); }
· sw.Flush();
· sw.Close();
· fs.Close();
· print("Write_Dictionary");
· }
· private (NDArray, NDArray) Randomize(NDArray x, NDArray y)
· {
· var perm = np.random.permutation(y.shape[0]);
· np.random.shuffle(perm);
· return (x[perm], y[perm]);
· }
· private (NDArray, NDArray) GetNextBatch(NDArray x, NDArray y, int start, int end)
· {
· var slice = new Slice(start, end);
· var x_batch = x[slice];
· var y_batch = y[slice];
· return (x_batch, y_batch);
· }
· private unsafe (NDArray, NDArray) GetNextBatch(Session sess, string[] x, NDArray y, int start, int end)
· {
· NDArray x_batch = np.zeros(end - start, img_h, img_w, n_channels);
· int n = 0;
· for (int i = start; i < end; i++)
· {
· NDArray img4 = cv2.imread(x[i], IMREAD_COLOR.IMREAD_GRAYSCALE);
· x_batch[n] = sess.run(normalized, (decodeJpeg, img4));
· n++;
· }
· var slice = new Slice(start, end);
· var y_batch = y[slice];
· return (x_batch, y_batch);
· }
· #endregion
複制
測試集預測
· 訓練完成的模型對test資料集進行預測,并統計準确率
· 計算圖中增加了一個提取預測結果Top-1的機率的節點,最後測試集預測的時候可以把詳細的預測資料進行輸出,友善實際工程中進行調試和優化。
· public void Test(Session sess)
· {
· (loss_test, accuracy_test) = sess.run((loss, accuracy), (x, x_test), (y, y_test));
· print("CNN:" + "---------------------------------------------------------");
· print("CNN:" + $"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}");
· print("CNN:" + "---------------------------------------------------------");
·
· (Test_Cls, Test_Data) = sess.run((cls_prediction, prob), (x, x_test));
·
· }
· private void TestDataOutput()
· {
· for (int i = 0; i < ArrayLabel_Test.Length; i++)
· {
· Int64 real = ArrayLabel_Test[i];
· int predict = (int)(Test_Cls[i]);
· var probability = Test_Data[i, predict];
· string result = (real == predict) ? "OK" : "NG";
· string fileName = ArrayFileName_Test[i];
· string real_str = Dict_Label[real];
· string predict_str = Dict_Label[predict];
· print((i + 1).ToString() + "|" + "result:" + result + "|" + "real_str:" + real_str + "|"
· + "predict_str:" + predict_str + "|" + "probability:" + probability.GetSingle().ToString() + "|"
· + "fileName:" + fileName);
· }
· }
複制
總結
本文主要是 .NET下的TensorFlow在實際工業現場視覺檢測項目中的應用,使用SciSharp的TensorFlow.NET建構了簡單的CNN圖像分類模型,該模型包含輸入層、卷積與池化層、扁平化層、全連接配接層和輸出層,這些層都是CNN分類模型的必要的層,針對工業現場的實際圖像進行了分類,分類準确性較高。
完整代碼可以直接用于大家自己的資料集進行訓練,已經在工業現場經過大量測試,可以在GPU或CPU環境下運作,隻需要更換tensorflow.dll檔案即可實作訓練環境的切換。
同時,訓練完成的模型檔案,可以使用 “CKPT+Meta” 或 當機成“PB” 2種方式,進行現場的部署,模型部署和現場應用推理可以全部在.NET平台下進行,實作工業現場程式的無縫對接。擺脫了以往Python下 需要通過Flask搭建伺服器進行資料通訊互動 的方式,現場部署應用時無需配置Python和TensorFlow的環境【無需對工業現場的原有PC更新安裝一大堆環境】,整個過程全部使用傳統的.NET的DLL引用的方式。