天天看點

J.U.C之Java并發容器:ConcurrentHashMap

HashMap是我們用得非常頻繁的一個集合,但是由于它是非線程安全的,在多線程環境下,put操作是有可能産生死循環的,導緻CPU使用率接近100%。為了解決該問題,提供了Hashtable和Collections.synchronizedMap(hashMap)兩種解決方案,但是這兩種方案都是對讀寫加鎖,獨占式,一個線程在讀時其他線程必須等待,吞吐量較低,性能較為低下。故而Doug Lea大神給我們提供了高性能的線程安全HashMap:ConcurrentHashMap。

ConcurrentHashMap的實作

ConcurrentHashMap作為Concurrent一族,其有着高效地并發操作,相比Hashtable的笨重,ConcurrentHashMap則更勝一籌了。

在1.8版本以前,ConcurrentHashMap采用分段鎖的概念,使鎖更加細化,但是1.8已經改變了這種思路,而是利用CAS+Synchronized來保證并發更新的安全,當然底層采用數組+連結清單+紅黑樹的存儲結構。

關于1.7和1.8的差別請參考占小狼部落格:談談ConcurrentHashMap1.7和1.8的不同實作:http://www.jianshu.com/p/e694f1e868ec

我們從如下幾個部分全面了解ConcurrentHashMap在1.8中是如何實作的:

  1. 重要概念
  2. 重要内部類
  3. ConcurrentHashMap的初始化
  4. put操作
  5. get操作
  6. size操作
  7. 擴容
  8. 紅黑樹轉換

重要概念

ConcurrentHashMap定義了如下幾個常量:

// 最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY =  << ;

// 預設初始值,必須是2的幕數
private static final int DEFAULT_CAPACITY = ;

//
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - ;

//
private static final int DEFAULT_CONCURRENCY_LEVEL = ;

// 
private static final float LOAD_FACTOR = f;

// 連結清單轉紅黑樹閥值,> 8 連結清單轉換為紅黑樹
static final int TREEIFY_THRESHOLD = ;

//樹轉連結清單閥值,小于等于6(tranfer時,lc、hc=0兩個計數器分别++記錄原bin、新binTreeNode數量,<=UNTREEIFY_THRESHOLD 則untreeify(lo))
static final int UNTREEIFY_THRESHOLD = ;

//
static final int MIN_TREEIFY_CAPACITY = ;

//
private static final int MIN_TRANSFER_STRIDE = ;

//
private static int RESIZE_STAMP_BITS = ;

// 2^15-1,help resize的最大線程數
private static final int MAX_RESIZERS = ( << ( - RESIZE_STAMP_BITS)) - ;

// 32-16=16,sizeCtl中記錄size大小的偏移量
private static final int RESIZE_STAMP_SHIFT =  - RESIZE_STAMP_BITS;

// forwarding nodes的hash值
static final int MOVED     = -; 

// 樹根節點的hash值
static final int TREEBIN   = -; 

// ReservationNode的hash值
static final int RESERVED  = -; 

// 可用處理器數量
static final int NCPU = Runtime.getRuntime().availableProcessors();
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

上面是ConcurrentHashMap定義的常量,簡單易懂,就不多闡述了。下面介紹ConcurrentHashMap幾個很重要的概念。

  1. table:用來存放Node節點資料的,預設為null,預設大小為16的數組,每次擴容時大小總是2的幂次方;
  2. nextTable:擴容時新生成的資料,數組為table的兩倍;
  3. Node:節點,儲存key-value的資料結構;
  4. ForwardingNode:一個特殊的Node節點,hash值為-1,其中存儲nextTable的引用。隻有table發生擴容的時候,ForwardingNode才會發揮作用,作為一個占位符放在table中表示目前節點為null或則已經被移動
  5. sizeCtl:控制辨別符,用來控制table初始化和擴容操作的,在不同的地方有不同的用途,其值也不同,所代表的含義也不同 
    • 負數代表正在進行初始化或擴容操作
    • -1代表正在初始化
    • -N 表示有N-1個線程正在進行擴容操作
    • 正數或0代表hash表還沒有被初始化,這個數值表示初始化或下一次進行擴容的大小

重要内部類

為了實作ConcurrentHashMap,Doug Lea提供了許多内部類來進行輔助實作,如Node,TreeNode,TreeBin等等。下面我們就一起來看看ConcurrentHashMap幾個重要的内部類。

Node

作為ConcurrentHashMap中最核心、最重要的内部類,Node擔負着重要角色:key-value鍵值對。所有插入ConCurrentHashMap的中資料都将會包裝在Node中。定義如下:

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;             //帶有volatile,保證可見性
        volatile Node<K,V> next;    //下一個節點的指針

        Node(int hash, K key, V val, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }

        public final K getKey()       { return key; }
        public final V getValue()     { return val; }
        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
        public final String toString(){ return key + "=" + val; }
        /** 不允許修改value的值 */
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }

        public final boolean equals(Object o) {
            Object k, v, u; Map.Entry<?,?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k == key || k.equals(key)) &&
                    (v == (u = val) || v.equals(u)));
        }

        /**  指派get()方法 */
        Node<K,V> find(int h, Object k) {
            Node<K,V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash == h &&
                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

在Node内部類中,其屬性value、next都是帶有volatile的。同時其對value的setter方法進行了特殊處理,不允許直接調用其setter方法來修改value的值。最後Node還提供了find方法來指派map.get()。

TreeNode

我們在學習HashMap的時候就知道,HashMap的核心資料結構就是連結清單。在ConcurrentHashMap中就不一樣了,如果連結清單的資料過長是會轉換為紅黑樹來處理。當它并不是直接轉換,而是将這些連結清單的節點包裝成TreeNode放在TreeBin對象中,然後由TreeBin完成紅黑樹的轉換。是以TreeNode也必須是ConcurrentHashMap的一個核心類,其為樹節點類,定義如下:

static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, Node<K,V> next,
                 TreeNode<K,V> parent) {
            super(hash, key, val, next);
            this.parent = parent;
        }


        Node<K,V> find(int h, Object k) {
            return findTreeNode(h, k, null);
        }

        //查找hash為h,key為k的節點
        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
            if (k != null) {
                TreeNode<K,V> p = this;
                do  {
                    int ph, dir; K pk; TreeNode<K,V> q;
                    TreeNode<K,V> pl = p.left, pr = p.right;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                            (kc = comparableClassFor(k)) != null) &&
                            (dir = compareComparables(kc, k, pk)) != )
                        p = (dir < ) ? pl : pr;
                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
            }
            return null;
        }
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

源碼展示TreeNode繼承Node,且提供了findTreeNode用來查找查找hash為h,key為k的節點。

TreeBin

該類并不負責key-value的鍵值對包裝,它用于在連結清單轉換為紅黑樹時包裝TreeNode節點,也就是說ConcurrentHashMap紅黑樹存放是TreeBin,不是TreeNode。該類封裝了一系列的方法,包括putTreeVal、lookRoot、UNlookRoot、remove、balanceInsetion、balanceDeletion。由于TreeBin的代碼太長我們這裡隻展示構造方法(構造方法就是構造紅黑樹的過程):

static final class TreeBin<K,V> extends Node<K,V> {
        TreeNode<K, V> root;
        volatile TreeNode<K, V> first;
        volatile Thread waiter;
        volatile int lockState;
        static final int WRITER = ; // set while holding write lock
        static final int WAITER = ; // set when waiting for write lock
        static final int READER = ; // increment value for setting read lock

        TreeBin(TreeNode<K, V> b) {
            super(TREEBIN, null, null, null);
            this.first = b;
            TreeNode<K, V> r = null;
            for (TreeNode<K, V> x = b, next; x != null; x = next) {
                next = (TreeNode<K, V>) x.next;
                x.left = x.right = null;
                if (r == null) {
                    x.parent = null;
                    x.red = false;
                    r = x;
                } else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K, V> p = r; ; ) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -;
                        else if (ph < h)
                            dir = ;
                        else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == )
                            dir = tieBreakOrder(k, pk);
                        TreeNode<K, V> xp = p;
                        if ((p = (dir <= ) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= )
                                xp.left = x;
                            else
                                xp.right = x;
                            r = balanceInsertion(r, x);
                            break;
                        }
                    }
                }
            }
            this.root = r;
            assert checkInvariants(root);
        }

        /** 省略很多代碼 */
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

通過構造方法是不是發現了部分端倪,構造方法就是在構造一個紅黑樹的過程。

ForwardingNode

這是一個真正的輔助類,該類僅僅隻存活在ConcurrentHashMap擴容操作時。隻是一個标志節點,并且指向nextTable,它提供find方法而已。該類也是內建Node節點,其hash為-1,key、value、next均為null。如下:

static final class ForwardingNode<K,V> extends Node<K,V> {
        final Node<K,V>[] nextTable;
        ForwardingNode(Node<K,V>[] tab) {
            super(MOVED, null, null, null);
            this.nextTable = tab;
        }

        Node<K,V> find(int h, Object k) {
            // loop to avoid arbitrarily deep recursion on forwarding nodes
            outer: for (Node<K,V>[] tab = nextTable;;) {
                Node<K,V> e; int n;
                if (k == null || tab == null || (n = tab.length) ==  ||
                        (e = tabAt(tab, (n - ) & h)) == null)
                    return null;
                for (;;) {
                    int eh; K ek;
                    if ((eh = e.hash) == h &&
                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                    if (eh < ) {
                        if (e instanceof ForwardingNode) {
                            tab = ((ForwardingNode<K,V>)e).nextTable;
                            continue outer;
                        }
                        else
                            return e.find(h, k);
                    }
                    if ((e = e.next) == null)
                        return null;
                }
            }
        }
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

構造函數

ConcurrentHashMap提供了一系列的構造函數用于建立ConcurrentHashMap對象:

public ConcurrentHashMap() {
    }

    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < )
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> )) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> ) + ));
        this.sizeCtl = cap;
    }

    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, );
    }

    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > f) || initialCapacity <  || concurrencyLevel <= )
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)( + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

初始化: initTable()

ConcurrentHashMap的初始化主要由initTable()方法實作,在上面的構造函數中我們可以看到,其實ConcurrentHashMap在構造函數中并沒有做什麼事,僅僅隻是設定了一些參數而已。其真正的初始化是發生在插入的時候,例如put、merge、compute、computeIfAbsent、computeIfPresent操作時。其方法定義如下:

private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == ) {
            //sizeCtl < 0 表示有其他線程在初始化,該線程必須挂起
            if ((sc = sizeCtl) < )
                Thread.yield();
            // 如果該線程擷取了初始化的權利,則用CAS将sizeCtl設定為-1,表示本線程正在初始化
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -)) {
                    // 進行初始化
                try {
                    if ((tab = table) == null || tab.length == ) {
                        int n = (sc > ) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        // 下次擴容的大小
                        sc = n - (n >>> ); ///相當于0.75*n 設定一個擴容的門檻值  
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

初始化方法initTable()的關鍵就在于sizeCtl,該值預設為0,如果在構造函數時有參數傳入該值則為2的幂次方。該值如果 < 0,表示有其他線程正在初始化,則必須暫停該線程。如果線程獲得了初始化的權限則先将sizeCtl設定為-1,防止有其他線程進入,最後将sizeCtl設定0.75 * n,表示擴容的門檻值。

put操作

ConcurrentHashMap最常用的put、get操作,ConcurrentHashMap的put操作與HashMap并沒有多大差別,其核心思想依然是根據hash值計算節點插入在table的位置,如果該位置為空,則直接插入,否則插入到連結清單或者樹中。但是ConcurrentHashMap會涉及到多線程情況就會複雜很多。我們先看源代碼,然後根據源代碼一步一步分析:

public V put(K key, V value) {
        return putVal(key, value, false);
    }

    final V putVal(K key, V value, boolean onlyIfAbsent) {
        //key、value均不能為null
        if (key == null || value == null) throw new NullPointerException();
        //計算hash值
        int hash = spread(key.hashCode());
        int binCount = ;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            // table為null,進行初始化工作
            if (tab == null || (n = tab.length) == )
                tab = initTable();
            //如果i位置沒有節點,則直接插入,不需要加鎖
            else if ((f = tabAt(tab, i = (n - ) & hash)) == null) {
                if (casTabAt(tab, i, null,
                        new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            // 有線程正在進行擴容操作,則先幫助擴容
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                //對該節點進行加鎖處理(hash值相同的連結清單的頭節點),對性能有點兒影響
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        //fh > 0 表示為連結清單,将該節點插入到連結清單尾部
                        if (fh >= ) {
                            binCount = ;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                //hash 和 key 都一樣,替換value
                                if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    //putIfAbsent()
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                //連結清單尾部  直接插入
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                            value, null);
                                    break;
                                }
                            }
                        }
                        //樹節點,按照樹的插入操作進行插入
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = ;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                    value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != ) {
                    // 如果連結清單長度已經達到臨界值8 就需要把連結清單轉換為樹結構
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }

        //size + 1  
        addCount(L, binCount);
        return null;
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

按照上面的源碼,我們可以确定put整個流程如下:

  • 判空;ConcurrentHashMap的key、value都不允許為null
  • 計算hash。利用方法計算hash值。
static final int spread(int h) {
        return (h ^ (h >>> )) & HASH_BITS;
    }
           
  • 1
  • 2
  • 3
  • 周遊table,進行節點插入操作,過程如下: 
    • 如果table為空,則表示ConcurrentHashMap還沒有初始化,則進行初始化操作:initTable()
    • 根據hash值擷取節點的位置i,若該位置為空,則直接插入,這個過程是不需要加鎖的。計算f位置:i=(n - 1) & hash
    • 如果檢測到fh = f.hash == -1,則f是ForwardingNode節點,表示有其他線程正在進行擴容操作,則幫助線程一起進行擴容操作
    • 如果f.hash >= 0 表示是連結清單結構,則周遊連結清單,如果存在目前key節點則替換value,否則插入到連結清單尾部。如果f是TreeBin類型節點,則按照紅黑樹的方法更新或者增加節點
    • 若連結清單長度 > TREEIFY_THRESHOLD(預設是8),則将連結清單轉換為紅黑樹結構
  • 調用addCount方法,ConcurrentHashMap的size + 1

這裡整個put操作已經完成。

get操作

ConcurrentHashMap的get操作還是挺簡單的,無非就是通過hash來找key相同的節點而已,當然需要區分連結清單和樹形兩種情況。

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        // 計算hash
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) >  &&
                (e = tabAt(tab, (n - ) & h)) != null) {
            // 搜尋到的節點key與傳入的key相同且不為null,直接傳回這個節點
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            // 樹
            else if (eh < )
                return (p = e.find(h, key)) != null ? p.val : null;
            // 連結清單,周遊
            while ((e = e.next) != null) {
                if (e.hash == h &&
                        ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

get操作的整個邏輯非常清楚: 

- 計算hash值 

- 判斷table是否為空,如果為空,直接傳回null 

- 根據hash值擷取table中的Node節點(tabAt(tab, (n - 1) & h)),然後根據連結清單或者樹形方式找到相對應的節點,傳回其value值。

size 操作

ConcurrentHashMap的size()方法我們雖然用得不是很多,但是我們還是很有必要去了解的。ConcurrentHashMap的size()方法傳回的是一個不精确的值,因為在進行統計的時候有其他線程正在進行插入和删除操作。當然為了這個不精确的值,ConcurrentHashMap也是操碎了心。

為了更好地統計size,ConcurrentHashMap提供了baseCount、counterCells兩個輔助變量和一個CounterCell輔助内部類。

@sun.misc.Contended static final class CounterCell {
        volatile long value;
        CounterCell(long x) { value = x; }
    }

    //ConcurrentHashMap中元素個數,但傳回的不一定是目前Map的真實元素個數。基于CAS無鎖更新
    private transient volatile long baseCount;

    private transient volatile CounterCell[] counterCells;
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

這裡我們需要清楚CounterCell 的定義

size()方法定義如下:

public int size() {
        long n = sumCount();
        return ((n < L) ?  :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                (int)n);
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

内部調用sunmCount():

final long sumCount() {
        CounterCell[] as = counterCells; CounterCell a;
        long sum = baseCount;
        if (as != null) {
            for (int i = ; i < as.length; ++i) {
                //周遊,所有counter求和
                if ((a = as[i]) != null)
                    sum += a.value;     
            }
        }
        return sum;
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

sumCount()就是疊代counterCells來統計sum的過程。我們知道put操作時,肯定會影響size(),我們就來看看CouncurrentHashMap是如何為了這個不和諧的size()操碎了心。

在put()方法最後會調用addCount()方法,該方法主要做兩件事,一件更新baseCount的值,第二件檢測是否進行擴容,我們隻看更新baseCount部分:

private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        // s = b + x,完成baseCount++操作;
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            if (as == null || (m = as.length - ) <  ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                //  多線程CAS發生失敗時執行
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= )
                return;
            s = sumCount();
        }

        // 檢查是否進行擴容
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

x == 1,如果counterCells == null,則U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x),如果并發競争比較大可能會導緻改過程失敗,如果失敗則最終會調用fullAddCount()方法。其實為了提高高并發的時候baseCount可見性的失敗問題,又避免一直重試,JDK 8 引入了類Striped64,其中LongAdder和DoubleAdder都是基于該類實作的,而CounterCell也是基于Striped64實作的。如果counterCells != null,且uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)也失敗了,同樣會調用fullAddCount()方法,最後調用sumCount()計算s。

其實在1.8中,它不推薦size()方法,而是推崇mappingCount()方法,該方法的定義和size()方法基本一緻:

public long mappingCount() {
        long n = sumCount();
        return (n < L) ? L : n; // ignore transient negative values
    }
           
  • 1
  • 2
  • 3
  • 4

擴容操作

當ConcurrentHashMap中table元素個數達到了容量門檻值(sizeCtl)時,則需要進行擴容操作。在put操作時最後一個會調用addCount(long x, int check),該方法主要做兩個工作:1.更新baseCount;2.檢測是否需要擴容操作。如下:

private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        // 更新baseCount

        //check >= 0 :則需要進行擴容操作
        if (check >= ) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                    (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < ) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs +  ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= )
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + ))
                        transfer(tab, nt);
                }

                //目前線程是唯一的或是第一個發起擴容的線程  此時nextTable=null
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                        (rs << RESIZE_STAMP_SHIFT) + ))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

transfer()方法為ConcurrentHashMap擴容操作的核心方法。由于ConcurrentHashMap支援多線程擴容,而且也沒有進行加鎖,是以實作會變得有點兒複雜。整個擴容操作分為兩步:

  1. 建構一個nextTable,其大小為原來大小的兩倍,這個步驟是在單線程環境下完成的
  2. 将原來table裡面的内容複制到nextTable中,這個步驟是允許多線程操作的,是以性能得到提升,減少了擴容的時間消耗

我們先來看看源代碼,然後再一步一步分析:

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        // 每核處理的量小于16,則強制指派16
        if ((stride = (NCPU > ) ? (n >>> ) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << ];        //建構一個nextTable對象,其容量為原來容量的兩倍
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        // 連接配接點指針,用于标志位(fwd的hash值為-1,fwd.nextTable=nextTab)
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        // 當advance == true時,表明該節點已經處理過了
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = , bound = ;;) {
            Node<K,V> f; int fh;
            // 控制 --i ,周遊原hash表中的節點
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= ) {
                    i = -;
                    advance = false;
                }
                // 用CAS計算得到的transferIndex
                else if (U.compareAndSwapInt
                        (this, TRANSFERINDEX, nextIndex,
                                nextBound = (nextIndex > stride ?
                                        nextIndex - stride : ))) {
                    bound = nextBound;
                    i = nextIndex - ;
                    advance = false;
                }
            }
            if (i <  || i >= n || i + n >= nextn) {
                int sc;
                // 已經完成所有節點複制了
                if (finishing) {
                    nextTable = null;
                    table = nextTab;        // table 指向nextTable
                    sizeCtl = (n << ) - (n >>> );     // sizeCtl門檻值為原來的1.5倍
                    return;     // 跳出死循環,
                }
                // CAS 更擴容門檻值,在這裡面sizectl值減一,說明新加入一個線程參與到擴容操作
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - )) {
                    if ((sc - ) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            // 周遊的節點為null,則放入到ForwardingNode 指針節點
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            // f.hash == -1 表示周遊到了ForwardingNode節點,意味着該節點已經處理過了
            // 這裡是控制并發擴容的核心
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                // 節點加鎖
                synchronized (f) {
                    // 節點複制工作
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        // fh >= 0 ,表示為連結清單節點
                        if (fh >= ) {
                            // 構造兩個連結清單  一個是原連結清單  另一個是原連結清單的反序排列
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == ) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == )
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            // 在nextTable i 位置處插上連結清單
                            setTabAt(nextTab, i, ln);
                            // 在nextTable i + n 位置處插上連結清單
                            setTabAt(nextTab, i + n, hn);
                            // 在table i 位置處插上ForwardingNode 表示該節點已經處理過了
                            setTabAt(tab, i, fwd);
                            // advance = true 可以執行--i動作,周遊節點
                            advance = true;
                        }
                        // 如果是TreeBin,則按照紅黑樹進行處理,處理邏輯與上面一緻
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = , hc = ;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                        (h, e.key, e.val, null, null);
                                if ((h & n) == ) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }

                            // 擴容後樹節點個數若<=6,将樹轉連結清單
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != ) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != ) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153

上面的源碼有點兒長,稍微複雜了一些,在這裡我們抛棄它多線程環境,我們從單線程角度來看: 

1. 為每個核心分任務,并保證其不小于16 

2. 檢查nextTable是否為null,如果是,則初始化nextTable,使其容量為table的兩倍 

3. 死循環周遊節點,知道finished:節點從table複制到nextTable中,支援并發,請思路如下: 

- 如果節點 f 為null,則插入ForwardingNode(采用Unsafe.compareAndSwapObjectf方法實作),這個是觸發并發擴容的關鍵 

- 如果f為連結清單的頭節點(fh >= 0),則先構造一個反序連結清單,然後把他們分别放在nextTable的i和i + n位置,并将ForwardingNode 插入原節點位置,代表已經處理過了 

- 如果f為TreeBin節點,同樣也是構造一個反序 ,同時需要判斷是否需要進行unTreeify()操作,并把處理的結果分别插入到nextTable的i 和i+nw位置,并插入ForwardingNode 節點 

4. 所有節點複制完成後,則将table指向nextTable,同時更新sizeCtl = nextTable的0.75倍,完成擴容過程

在多線程環境下,ConcurrentHashMap用兩點來保證正确性:ForwardingNode和synchronized。當一個線程周遊到的節點如果是ForwardingNode,則繼續往後周遊,如果不是,則将該節點加鎖,防止其他線程進入,完成後設定ForwardingNode節點,以便要其他線程可以看到該節點已經處理過了,如此交叉進行,高效而又安全。

下圖是擴容的過程(來自:http://blog.csdn.net/u010723709/article/details/48007881):

J.U.C之Java并發容器:ConcurrentHashMap

在put操作時如果發現fh.hash = -1,則表示正在進行擴容操作,則目前線程會協助進行擴容操作。

else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
           
  • 1
  • 2

helpTransfer()方法為協助擴容方法,當調用該方法的時候,nextTable一定已經建立了,是以該方法主要則是進行複制工作。如下:

final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
                (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                    (sc = sizeCtl) < ) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs +  ||
                        sc == rs + MAX_RESIZERS || transferIndex <= )
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + )) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

轉換紅黑樹

在put操作是,如果發現連結清單結構中的元素超過了TREEIFY_THRESHOLD(預設為8),則會把連結清單轉換為紅黑樹,已便于提高查詢效率。如下:

if (binCount >= TREEIFY_THRESHOLD)
    treeifyBin(tab, i);
           
  • 1
  • 2

調用treeifyBin方法用與将連結清單轉換為紅黑樹。

private final void treeifyBin(Node<K,V>[] tab, int index) {
        Node<K,V> b; int n, sc;
        if (tab != null) {
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)//如果table.length<64 就擴大一倍 傳回
                tryPresize(n << );
            else if ((b = tabAt(tab, index)) != null && b.hash >= ) {
                synchronized (b) {
                    if (tabAt(tab, index) == b) {
                        TreeNode<K,V> hd = null, tl = null;
                        //構造了一個TreeBin對象 把所有Node節點包裝成TreeNode放進去
                        for (Node<K,V> e = b; e != null; e = e.next) {
                            TreeNode<K,V> p =
                                new TreeNode<K,V>(e.hash, e.key, e.val,
                                                  null, null);//這裡隻是利用了TreeNode封裝 而沒有利用TreeNode的next域和parent域
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        //在原來index的位置 用TreeBin替換掉原來的Node對象
                        setTabAt(tab, index, new TreeBin<K,V>(hd));
                    }
                }
            }
        }
    }
           
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

從上面源碼可以看出,建構紅黑樹的過程是同步的,進入同步後過程如下: 

1. 根據table中index位置Node連結清單,重新生成一個hd為頭結點的TreeNode 

2. 根據hd頭結點,生成TreeBin樹結構,并用TreeBin替換掉原來的Node對象。

整個紅黑樹的建構過程有點兒複雜,關于ConcurrentHashMap 紅黑樹的建構過程,我們後續分析

繼續閱讀