天天看點

【轉】hadoop中map和reduce的數量設定問題

原文連結 http://my.oschina.net/Chanthon/blog/150500

map和reduce是hadoop的核心功能,hadoop正是通過多個map和reduce的并行運作來實作任務的分布式并行計算,

從這個觀點來看,如果将map和reduce的數量設定為1,那麼使用者的任務就沒有并行執行,

但是map和reduce的數量也不能過多,數量過多雖然可以提高任務并行度,

但是太多的map和reduce也會導緻整個hadoop架構因為過度的系統資源開銷而使任務失敗。

是以使用者在送出map/reduce作業時應該在一個合理的範圍内,

這樣既可以增強系統負載勻衡,也可以降低任務失敗的開銷。

1 map的數量

map的數量通常是由hadoop叢集的DFS塊大小确定的,也就是輸入檔案的總塊數,

正常的map數量的并行規模大緻是每一個Node是10~100個,對于CPU消耗較小的作業可以設定Map數量為300個左右,

但是由于hadoop的沒一個任務在初始化時需要一定的時間,是以比較合理的情況是每個map執行的時間至少超過1分鐘。

具體的資料分片是這樣的,InputFormat在預設情況下會根據hadoop叢集的DFS塊大小進行分片,

每一個分片會由一個map任務來進行處理,當然使用者還是可以通過參數mapred.min.split.size參數在作業送出用戶端進行自定義設定。

還有一個重要參數就是mapred.map.tasks,這個參數設定的map數量僅僅是一個提示,隻有當InputFormat

決定了map任務的個數比mapred.map.tasks值小時才起作用。同樣,Map任務的個數也能

通過使用JobConf 的conf.setNumMapTasks(int num)方法來手動地設定。這個方法能夠用來增加map任務的個數,

但是不能設定任務的個數小于Hadoop系統通過分割輸入資料得到的值。當然為了提高叢集的并發效率,

可以設定一個預設的map數量,當使用者的map數量較小或者比本身自動分割的值還小時可以使用一個相對交大的預設值,

進而提高整體hadoop叢集的效率。

2 reduece的數量

reduce在運作時往往需要從相關map端複制資料到reduce節點來處理,是以相比于map任務。

reduce節點資源是相對比較缺少的,同時相對運作較慢,正确的reduce任務的個數應該

是0.95或者1.75 *(節點數 ×mapred.tasktracker.tasks.maximum參數值)。如果任務數是節點個數的0.95倍,

那麼所有的reduce任務能夠在 map任務的輸出傳輸結束後同時開始運作。如果任務數是節點個數的1.75倍,

那麼高速的節點會在完成他們第一批reduce任務計算之後開始計算第二批 reduce任務,這樣的情況更有利于負載均衡。

同時需要注意增加reduce的數量雖然會增加系統的資源開銷,但是可以改善負載勻衡,降低任務失敗帶來的負面影響。

同樣,Reduce任務也能夠與 map任務一樣,通過設定JobConf 的conf.setNumReduceTasks(int num)方法來增加任務個數。

3 reduce數量為0

有些作業不需要進行歸約進行處理,那麼就可以設定reduce的數量為0來進行處理,這種情況下使用者的作業運作速度相對較高,

map的輸出會直接寫入到 SetOutputPath(path)設定的輸出目錄,而不是作為中間結果寫到本地。同時Hadoop架構在寫入檔案系統前并不對之進行排序。

map red.tasktracker.map.tasks.maximum 這個是一個task tracker中可同時執行的map的最大個數,預設值為2,

看《pro hadoop》:it is common to set this value to the effective number of CPUs on the node 

把ob分割成map和reduce,合理地選擇Job中 Tasks數的大小能顯著的改善Hadoop執行的性能。增加task的個數會增加系統架構的開銷,

但同時也會增強負載均衡并降低任務失敗的開銷。一個極端是1個map、1個reduce的情況,這樣沒有任務并行。

另一個極端是1,000,000個map、1,000,000個reduce的情況,會由于架構的開銷過大而使得系統資源耗盡。 

Map任務的數量 

Map的數量經常是由輸入資料中的DFS塊的數量來決定的。這還經常會導緻使用者通過調整DFS塊大小來調整map的數量。

正确的map任務的并行度似乎應該是10-100 maps/節點,盡管我們對于處理cpu運算量小的任務曾經把這個數字調正到300maps每節點。

Task的初始化會花費一些時間,是以最好控制每個 map任務的執行超過一分鐘。 

實際上控制map任務的個數是很 精妙的。mapred.map.tasks參數對于InputFormat設定map執行的個數來說僅僅是一個提示。

InputFormat的行為應該把輸入資料總的位元組值分割成合适數量的片段。但是預設的情況是DFS的塊大小會成為對輸入資料分割片段大小的上界。

一個分割大小的下界可以通過一個mapred.min.split.size參數來設定。是以,如果你有一個大小是10TB的輸入資料,并設定DFS塊大小為 128M,

你必須設定至少82K個map任務,除非你設定的mapred.map.tasks參數比這個數還要大。最終InputFormat 決定了map任務的個數。 

Map任務的個數也能通過使用JobConf 的 conf.setNumMapTasks(int num)方法來手動地設定。這個方法能夠用來增加map任務的個數,

但是不能設定任務的個數小于Hadoop系統通過分割輸入資料得到的值。 

Reduce任務的個數 

正确的reduce任務的 個數應該是0.95或者1.75 ×(節點數 ×mapred.tasktracker.tasks.maximum參數值)。

如果任務數是節點個數的0.95倍,那麼所有的reduce任務能夠在 map任務的輸出傳輸結束後同時開始運作。

如果任務數是節點個數的1.75倍,那麼高速的節點會在完成他們第一批reduce任務計算之後開始計算第二批 reduce任務,

這樣的情況更有利于負載均衡。 

目前reduce任務的數量 由于輸出檔案緩沖區大小(io.buffer.size × 2 ×reduce任務個數 << 堆大小),被限制在大約1000個左右。

直到能夠指定一個固定的上限後,這個問題最終會被解決。 

Reduce任務的數量同時也控制着輸出目錄下輸出檔案的數量,但是通常情況下這并不重要,

因為下一階段的 map/reduce任務會把他們分割成更加小的片段。 

Reduce任務也能夠與 map任務一樣,通過設定JobConf 的conf.setNumReduceTasks(int num)方法來增加任務個數。

轉載于:https://www.cnblogs.com/ihongyan/p/4855256.html

繼續閱讀