題目連結:D. Same GCDs
time limit per test:2 seconds memory limit per test:256 megabytes inputstandard input outputstandard output
You are given two integers a and m. Calculate the number of integers x such that 0≤x<m and gcd(a,m)=gcd(a+x,m).
Note: gcd(a,b) is the greatest common divisor of a and b.
Input
The first line contains the single integer T (1≤T≤50) — the number of test cases.
Next T lines contain test cases — one per line. Each line contains two integers a and m (1≤a<m≤1010).
Output
Print T integers — one per test case. For each test case print the number of appropriate x-s.
input
3
4 9
5 10
42 9999999967
複制
output
6
1
9999999966
複制
Note
In the first test case appropriate x-s are [0,1,3,4,6,7].
In the second test case the only appropriate x is 0.
題目大意
給你兩個數 a,m。從[a,a+m)中取出任意一個數x,使得gcd(x,m)=gcd(a,m)成立,問你這樣的的x的個數一共有幾個。
解題思路
我們設 p=gcd(a,m); 則p=gcd(x,m);然後同時除以p得1=gcd(x/p,m/p);這時候我們發現其實要求的的也就是[a/p,a/p+m/p)中與m/p互質的數有幾個。同時減去a/p的,也就是[1,m/p)中于m/p互質的的個數,直接用歐拉函數就可以了;
代碼
#include<bits/stdc++.h>
using namespace std;
#define ll long long
int main()
{
int t;
ll a,m;
cin>>t;
while(t--)
{
cin>>a>>m;
ll p=__gcd(a,m);
ll ans=m/p;
ll q=ans;
//歐拉函數
for(ll i=2;i*i<=q;i++)
{
if(q%i==0) ans=ans-ans/i;
while(q%i==0) q/=i;
}
if(q!=1) ans-=ans/q;
cout<<ans<<"\n";
}
return 0;
}
複制