Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
----------------------------------------------------------------------------------------------------------------------------------------
題目看上去長了很多。但萬變不離其宗。
跟之前的系列1,和系列2的差別:
1. 以前是任意的array,現在我們的array是一個1 ... 9的固定array
2. 限制組合中元素的個數為k
array中的元素是隻能使用一次的。
運作時間:

代碼:
public class CombinationSumIII {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> result = new LinkedList<>();
doCombinationSum3(result, new LinkedList<>(), 1, k, n);
return result;
}
private void doCombinationSum3(List<List<Integer>> result, List<Integer> curList, int val, int k, int n) {
if (k == 0 && n == 0) {
result.add(new ArrayList<>(curList));
return;
}
if (n <= 0 || k <= 0) {
return;
}
for (int i = val; i <= 9; i++) {
curList.add(i);
doCombinationSum3(result, curList, i + 1, k - 1, n - i);
curList.remove(curList.size() - 1);
}
}
}