天天看點

OpenCV-繪制圖像的像素直方圖-Histogram

随手翻了翻之前推薦的那本OpenCV2的教程,突然發現了之前看圖像進行中的像素直方圖的實作教程,原本就打算找時間自己實作的,沒想到opencv是有這個功能的

而且這個功能可以輔助很多的圖像處理和識别的算法過程,是值得看一看的

OpenCV對于像素直方圖的統計有這麼一個函數:

void calcHist(const Mat* arrays, 
           
int narrays, 
           
const int* channels, 
           
InputArray mask, 
           
OutputArray hist, 
           
int dims, 
           
const int* histSize, 
           
const float** ranges, 
           
bool uniform=true, 
           
bool accumulate=false )
           

下面貼出官方的參數解釋,我覺得很好明白的

Parameters

        arrays – Source arrays. They all should have the same depth, CV_8U or CV_32F , and the

                        same size. Each of them can have an arbitrary number of channels.

        narrays – Number of source arrays.

        channels – List of the dims channels used to compute the histogram. The first ar-

                             ray channels are numerated from 0 to arrays[0].channels()-1 , the second ar-

                             ray channels are counted from arrays[0].channels() to arrays[0].channels() +

                             arrays[1].channels()-1, and so on.

       mask – Optional mask. If the matrix is not empty, it must be an 8-bit array of the same

                     size as arrays[i] . The non-zero mask elements mark the array elements counted in the

                     histogram.

      hist – Output histogram, which is a dense or sparse dims -dimensional array.

      dims – Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS

                   (equal to 32 in the current OpenCV version).

      histSize – Array of histogram sizes in each dimension.

      ranges – Array of the dims arrays of the histogram bin boundaries in each dimension.

                       When the histogram is uniform ( uniform =true), then for each dimension i it is enough to

                      specify the lower (inclusive) boundary L0 of the 0-th histogram bin and the upper (exclusive)

                      boundary UhistSize[i]−1 for the last histogram bin histSize[i]-1 . That is, in case of a

                      uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not

                      uniform ( uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:

                      L0 , U0 = L1 , U1 = L2 , ..., UhistSize[i]−2 = LhistSize[i]−1 , UhistSize[i]−1 . The array

                      elements, that are not between L0 and UhistSize[i]−1 , are not counted in the histogram.

       uniform – Flag indicatinfg whether the histogram is uniform or not (see above).

       accumulate – Accumulation flag. If it is set, the histogram is not cleared in the beginning

                                when it is allocated. This feature enables you to compute a single histogram from several

                                sets of arrays, or to update the histogram in time.

代碼:

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;

class Histogram
{
        private:
                int histSize[1];//number of bins
                float hranges[2];//min and max pixel value
                const float* ranges[1];
                int channels[1];//only 1 channel used here
        public:
                Histogram()
                {
                        //Prepare arguments for 1D histogram
                        histSize[0] = 256;
                        hranges[0] = 0.0;
                        hranges[1] = 255.0;
                        ranges[0] = hranges;
                        channels[0] = 0;//by default , we look at channel 0
                }
                cv::MatND getHistogram(const cv::Mat &image)
                {
                        cv::MatND hist;

                        //Compute histogram
                        cv::calcHist(&image,
                                        1,
                                        channels,
                                        cv::Mat(),
                                        hist,
                                        1,
                                        histSize,
                                        ranges
                                        );
                     return hist;
                }
                //Compute the 1D histogram and returns an image of it
                cv::Mat getHistogramImage(const cv::Mat &image)
                {
                        //compute histogram first
                        cv::MatND hist = getHistogram(image);

                        //Get min and max bin values
                        double maxVal = 0;
                        double minVal = 0;
                        cv::minMaxLoc(hist,&minVal,&maxVal);

                        //Image on which to display histogram
                        cv::Mat histImg(histSize[0],histSize[0],CV_8U,cv::Scalar(255));

                        //set highest point at 90% of nbins
                        int hpt = static_cast<int>(0.9*histSize[0]);

                        //Draw a vertical line for each bin
                        for( int h = 0;h<histSize[0];h++)
                        {
                                float binVal = hist.at<float>(h);
                                int intensity = static_cast< int >(binVal * hpt
                                                                   / maxVal);

                                //This function draw a line between 2 points
                                cv::line(histImg,cv::Point(h,histSize[0]),
                                                        cv::Point(h,histSize[0] - intensity),
                                                        cv::Scalar::all(0));
                        }
                        return histImg;
                }
};


int main()
{
        //Read input image
        cv::Mat image = cv::imread("1.png",0);//open in b&w
        //the histogram object
        Histogram h;
        //Compute the histogram
        /*cv::MatND histo = h.getHistogram(image);
        for(int i = 0;i<256;i++)
        {
                cout<<"Value "<<i<<"="<<histo.at<float>(i) <<endl;
        }*/
        cv::namedWindow("Histogram");
        cv::imshow("Histogram",h.getHistogramImage(image));
        cv::waitKey(0);
        return 0;
}
           

需要注意的是imread這個函數後面的那個參數,不清楚的可以查閱官方的手冊~

截圖:

OpenCV-繪制圖像的像素直方圖-Histogram

上面的代碼隻是讀取的灰階圖像回報的1D的直方圖,那麼如果我是3通道的RGB/BGR圖像呢?隻需要做相應的修改然後函數便會傳回3*256的一個Mat值

private:
                int histSize[3];//number of bins
                float hranges[2];//min and max pixel value
                const float* ranges[3];
                int channels[3];//only 1 channel used here
        public:
                Histogram()
                {
                        //Prepare arguments for 1D histogram
                        histSize[0] = 256;histSize[1] = 256;histSize[2] = 256;
                        hranges[0] = 0.0;
                        hranges[1] = 255.0;
                        ranges[0] = hranges;ranges[1] =hranges;
                        ranges[2] =hranges;
                        channels[0] = 0;channels[1] = 1;channels[2] = 2;
                }
                cv::MatND getHistogram(const cv::Mat &image)
                {
                        cv::MatND hist;

                        //Compute histogram
                        cv::calcHist(&image,
                                        1,
                                        channels,
                                        cv::Mat(),
                                        hist,
                                        3,
                                        histSize,
                                        ranges
                                        );
                     return hist;
                }
           

但是在3通道的直方圖計算過程中,有可能會覺得計算量過大了,同樣可以使用稀疏矩陣(sparse matrix),calcHist同樣支援

cv::SparseMat getSparseHistogram(const cv::Mat &image)
                {
                        cv::SparseMat hist(3,histSize,CV_32F);

                        //Compute histogram
                        cv::calcHist(&image,
                                        1,
                                        channels,
                                        cv::Mat(),
                                        hist,
                                        3,
                                        histSize,
                                        ranges
                                        );
                     return hist;
                }
           

接下來一段時間,就要回歸水魚的比賽了,OpenCV就要放一放

打算晚上寫一下北大提供的PoseToPose函數的分析指導,由于自己的學識有限,很難分析全面,真的希望有人可以來指正我的錯誤~

                                                                                                                                             張巍骞

2012-4-10