Problem Description There is a way of encryption in the Digital planet. If the number x, who lives in M area, K layer, then it will change its name to x ^ K mod M, that is newx = x ^ k mod m. Now the Digital Kingdom wants to make a program, which can find all the original number of a name living in some area, some layer. If there is no solution, output -1.
Input There are multiply test cases. Each test case contains there integers k, m , newx ,(0 <= newx , m ,k <= 1.5*10^15) , m is a prime number.
Output For each test case, you should output some lines, the format of the first line is: “caseN:” (N is the label of test case). Then next lines each contain a number x, output x as ascending order. (0 <= x < m)
Sample Input
1 5 4
2 13 8
3 13 8
Sample Output
case1:
4
case2:
-1
case3:
2
5
6
//
題目要求我們求出x^a mod b = c 其中所有 x 的值。因為其中規定了 b 總是素數,是以我們可以很容易的找到一個b的原根broot,然後利用babystep求出broot^t1 mod b = c,然後我們能利用同餘原理輕易得出若t2=b-1,broot^(t1+n*t2) mod b = c ,那麼我們下一步需要求的就是 n*t2 + m*a = t1 其中的 n 和 m ,然後枚舉所有符合條件的m,求出broot^m1,broot^m2......broot^mi 一系列數字就是我們要求的答案了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<ctime>
#define bignum __int64
using namespace std;
//x^k=b%m 已知k,b,m,求所有小于m的解x m是素數
//大整數分解
//求a,b的最大公約數
bignum gcd(bignum a,bignum b)
{
return b==0?a:gcd(b,a%b);
}
//求a*b%c,因為a,b很大,是以要先将b寫成二進制數,再加:例如3*7=3*(1+2+4);
bignum mulmod(bignum a,bignum b,bignum c)
{
bignum cnt=0,temp=a;
while(b)
{
if(b&1) cnt=(cnt+temp)%c;
temp=(temp+temp)%c;
b>>=1;
}
return cnt;
}
//求a^b%c,再次将b寫成二進制形式,例如:3^7=3^1*3^2*3^4;
bignum powmod(bignum a,bignum b,bignum c)
{
bignum cnt=1,temp=a;
while(b)
{
if(b&1) cnt=mulmod(cnt,temp,c);//cnt=(cnt*temp)%c;
temp=mulmod(temp,temp,c);//temp=(temp*temp)%c;
b>>=1;
}
return cnt;
}
//Miller-Rabin測試n是否為素數,1表示為素數,0表示非素數
int pri[10]={2,3,5,7,11,13,17,19,23,29};
bool Miller_Rabin(bignum n)
{
if(n<2) return 0;
if(n==2) return 1;
if(!(n&1)) return 0;
bignum k=0,m;
m=n-1;
while(m%2==0) m>>=1,k++;//n-1=m*2^k
for(int i=0;i<10;i++)
{
if(pri[i]>=n) return 1;
bignum a=powmod(pri[i],m,n);
if(a==1) continue;
int j;
for(j=0;j<k;j++)
{
if(a==n-1) break;
a=mulmod(a,a,n);
}
if(j<k) continue;
return 0;
}
return 1;
}
//pollard_rho 大整數分解,給出n的一個非1因子,傳回n是為一次沒有找到
bignum pollard_rho(bignum C,bignum N)
{
bignum I, X, Y, K, D;
I = 1;
X = rand() % N;
Y = X;
K = 2;
do
{
I++;
D = gcd(N + Y - X, N);
if (D > 1 && D < N) return D;
if (I == K) Y = X, K *= 2;
X = (mulmod(X, X, N) + N - C) % N;
}while (Y != X);
return N;
}
//找出N的最小質因數
bignum rho(bignum N)
{
if (Miller_Rabin(N)) return N;
do
{
bignum T = pollard_rho(rand() % (N - 1) + 1, N);
if (T < N)
{
bignum A, B;
A = rho(T);
B = rho(N / T);
return A < B ? A : B;
}
}
while(1);
}
//N分解質因數,這裡是所有質因數,有重複的
bignum AllFac[1100];
int Facnum;
void findrepeatfac(bignum n)
{
if(Miller_Rabin(n))
{
AllFac[++Facnum]=n;
return ;
}
bignum factor;
do
{
factor=pollard_rho(rand() % (n - 1) + 1, n);
}while(factor>=n);
findrepeatfac(factor);
findrepeatfac(n/factor);
}
//求N的所有質因數,是除去重複的
bignum Fac[1100];
int num[1100];
int len;//0-len
void FindFac(bignum n)
{
len=0;
//初始化
memset(AllFac,0,sizeof(AllFac));
memset(num,0,sizeof(num));
Facnum=0;
findrepeatfac(n);
sort(AllFac+1,AllFac+1+Facnum);
Fac[0]=AllFac[1];
num[0]=1;
for(int i=2;i<=Facnum;i++)
{
if(Fac[len]!=AllFac[i])
{
Fac[++len]=AllFac[i];//important
}
num[len]++;
}
}
//求n的歐拉函數值
bignum oula(bignum n)
{
FindFac(n);
bignum cnt=n;
for(int i=0;i<=len;i++)
{
cnt-=cnt/Fac[i];
}
return cnt;
}
//枚舉n的所有因子 cnt
bignum yinzi[100000];
bignum yinzinum;//初始化在main中(0-yinzinum-1)
void dfs(int id,bignum cnt)
{
yinzi[yinzinum++]=cnt;
if(id==len+1)
{
return ;
}
bignum temp=1;
for(int i=0;i<=num[id];i++)
{
dfs(id+1,cnt*temp);
temp*=Fac[id];
}
}
//求原根 p是素數
int primitive(bignum p)
{
//枚舉n的所有因子
if(p==2) return 1;
FindFac(p-1);
yinzinum=0;//因子個數
dfs(0,1);
sort(yinzi,yinzi+yinzinum);
yinzinum=unique(yinzi,yinzi+yinzinum)-yinzi;
for(int i=2;i<p;i++)
{
int flag=1;
for(int j=0;j<yinzinum-1;j++)//i^(p-1)=1(mod p)
{
if(powmod(i,yinzi[j],p)==1)
{
flag=0;break;
}
}
if(flag) return i;
}
return -1;
}
//baby-step
struct Node
{
int index;//序号
__int64 val;//值
};
Node rnum[6600000];
__int64 _pow(__int64 a,__int64 b,__int64 m)
{
if(b==0) return 1;
if(b==1) return a%m;
__int64 t=_pow(a,b/2,m);
t=(t*t)%m;
if(b&1) t=(t*a)%m;
return t;
}
bool cmp(Node h,Node k)
{
if(h.val!=k.val) return h.val<k.val;
return h.index<k.index;
}
int _binary_search(__int64 key,__int64 len)//二分查找
{
int left = 0,right = len;
int result = - 1,mid;
while(left <= right)
{
mid = (left + right)>>1;
if(rnum[mid].val == key)
{
result = rnum[mid].index;
right = mid -1;
}
else if(rnum[mid].val < key) left = mid + 1;
else right = mid -1;
}
return result;
}
int Baby_step_Giant_step(__int64 a,__int64 b,__int64 n)//計算最小的x使得a^x=b(mod n) n是素數
{
__int64 m=(__int64)(sqrt(n+0.5)+1);
//計算 (j,a^j%n) (0<=j<m)
rnum[0].index=0,rnum[0].val=1;
for(int i=1;i<m;i++) rnum[i].index=i,rnum[i].val=rnum[i-1].val*a%n;
sort(rnum,rnum+m,cmp);
//計算 a^-m
__int64 a_m=_pow(a,n-1-m,n);//因為n是素數,是以a^(n-1)=1(mod n)
__int64 y=b;
for(int i=0;i<m;i++)
{
int res=_binary_search(y,m);
if(res!=-1) return i*m+res;
y=y*a_m%n;
}
return -1;
}
//exgcd
bignum exgcd(bignum a,bignum b,bignum&x,bignum &y)
{
if(b==0) return x=1,y=0,a;
bignum r=exgcd(b,a%b,x,y);
bignum t=x;
x=y;
y=t-a/b*y;
return r;
}
//求(a/b)%p,gcd(B,p)=1
__int64 calc(__int64 a,__int64 b,__int64 mod)
{
__int64 x,y;
__int64 r=exgcd(b,mod,x,y);
x*=a;
x=(x%mod+mod)%mod;
return x;
}
//x^k=b(mod m) m是素數
bignum ans[1000];
int ansnum;
//x^k=b(mod m) m是素數 k>0,b>0,m>1
void solve(bignum k,bignum b,bignum m)
{
bignum root=primitive(m);//存在
bignum t1=Baby_step_Giant_step(root,b,m);
bignum t2=m-1;
//n*t2 + m*k = t1
bignum x,y;
bignum r=exgcd(t2,k,x,y);
if(t1%r)
{
printf("-1\n");
return ;
}
x*=t1/r,y*=t1/r;
ansnum=0;
while(y<0) x-=k/r,y+=t2/r;
for(;;)
{
bignum t=powmod(root,y,m);
int flag=1;
for(int j=0;j<ansnum;j++)
{
if(ans[j]==t)
{
flag=0;
break;
}
}
if(!flag) break;
ans[ansnum++]=t;
x-=k/r,y+=t2/r;
}
sort(ans,ans+ansnum);
for(int i=0;i<ansnum;i++) printf("%I64d\n",ans[i]);
}
int main()
{
srand(time(NULL));
int pl=1;
__int64 x,k,b,m;
while(scanf("%I64d%I64d%I64d",&k,&m,&b)==3)
{
printf("case%d:\n",pl++);
solve(k,b,m);
}
return 0;
}