問題1:

程式,如下
from sympy import *
f = symbols('f', cls=Function)
x = symbols('x')
eq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))
print(dsolve(eq, f(x)))
結果
Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)
附:布置考試中兩題
1.利用python的Sympy庫求解微分方程的解 y=f(x),并嘗試利用matplotlib繪制函數圖像
程式,如下
from sympy import *
f = symbols('f', cls=Function)
x = symbols('x')
eq = Eq(f(x).diff(x,1)+f(x)+f(x)**2, 0)
print(dsolve(eq, f(x)))
C1 = symbols('C1')
eqr = -C1/(C1 - exp(x))
eqr1 = eqr.subs(x, 0)
print(solveset(eqr1 - 1, C1))
eqr2 = eqr.subs(C1, 1/2)
# 畫圖
import matplotlib.pyplot as plt
import numpy as np
x_1 = np.arange(-5, 5, 0.1)
y_1 = [-0.5/(0.5 - exp(x)) for x in x_1]
plt.plot(x_1, y_1)
plt.axis([-6,6,-10,10])
plt.grid()
plt.show()
結果
Eq(f(x), -C1/(C1 - exp(x)))
FiniteSet(1/2)
2.利用python的Sympy庫求解微分方程的解 y=y(x),并嘗試利用matplotlib繪制函數圖像
程式,如下
from sympy import *
y = symbols('y', cls=Function)
x = symbols('x')
eq = Eq(y(x).diff(x,1), y(x))
print(dsolve(eq, y(x)))
C1 = symbols('C1')
eqr = C1*exp(x)
eqr1 = eqr.subs(x, 0)
print(solveset(eqr1 - 1, C1))
eqr2 = eqr.subs(C1, 1)
# 畫圖
import matplotlib.pyplot as plt
import numpy as np
x_1 = np.arange(-5, 5, 0.01)
y_1 = [exp(x) for x in x_1]
plt.plot(x_1, y_1, color='orange')
plt.grid()
plt.show()
結果
Eq(y(x), C1*exp(x))
FiniteSet(1)
到此這篇關于python中sympy庫求常微分方程的用法的文章就介紹到這了,更多相關python sympy常微分方程内容請搜尋python部落格以前的文章或繼續浏覽下面的相關文章希望大家以後多多支援python部落格!