Binder架構 – Binder 驅動
Binder架構 – android AIDL 的使用
Binder架構 – 使用者空間和驅動的互動
Binder架構 – Binder 驅動
Binder 架構 – binder 使用者空間架構
核心的檔案結構
-
task_struct
Linux核心通過一個被稱為程序描述符的task_struct結構體來管理程序,這個結構體包含了一個程序所需的所有資訊。
-
struct file 和 struct files_struct
在*nuix 系統中,萬物皆為檔案,在核心中檔案用一個struct file來描述,在使用者空間用一個整形的檔案描述符來表示,和核心的struct file對應。一個程序中所有的struct file檔案用struct files_struct 組織, struct task_struct 結構體有一個 *struct files_struct files 域描述在這個程序中打開的檔案。
kernle 的記憶體管理
記憶體區域
linux 中程序空間位址分為兩部分,核心空間位址和使用者空間位址。在32位系統上面,Linux的虛拟位址空間為0~4G位元組。這4G 位元組的空間分為兩部分。将最高的1G位元組(從虛拟位址0xC0000000 到0xFFFFFFFF),供核心使用,稱為“核心空間”。而将較低的3G位元組(從虛拟位址0x00000000 到0xBFFFFFFF),供各個程序使用,稱為“使用者空間”。核心空間被各個程序共享。
根據硬體的特性,其中核心空間位址又可以分為幾個區域,主要有:ZONE_DMA, ZONE_NORMAL, ZONE_HIGHEM。在實體記憶體直接線性映射到核心空間ZONE_NORMAL,理論上如果記憶體不超過1G,1G線性空間足夠映射實體記憶體了。如果實體記憶體大于1G,為了使核心空間的1G線性位址可以通路到大于1G的實體記憶體,把實體記憶體分為兩部分,ZONE_NORMAL 區域的進行直接記憶體映射,這個區域的大小一般是896MB,也就是說存在一個線性關系:virtual address = physical address + PAGE_OFFSET,這裡的PAGE_OFFSET為3G。剩下一個128MB的空間,稱為高端記憶體,這個空間作為一個視窗動态進行映射,這樣就可以通路大于1G的記憶體。ZONE_DMA 主要用于硬體特定的位址通路。
Android X86 模拟器上可以看到:MemTotal HighTotal LowTotal。
generic_x86:/ # cat /proc/meminfo
MemTotal: 1030820 kB
MemFree: 519392 kB
Buffers: 4460 kB
Cached: 325292 kB
SwapCached: 0 kB
Active: 184672 kB
Inactive: 290712 kB
HighTotal: 180104 kB
HighFree: 1132 kB
LowTotal: 850716 kB
LowFree: 518260 kB

mm_struct 和vm_area_struct
mm_struct 用來描述一個程序的虛拟位址空間。程序的 mm_struct 則包含裝入 的可執行映像資訊以及程序的頁目錄指針pgd。該結構還包含有指向 vm_area_struct結構的幾個指針,每個vm_area_struct代表程序的一個虛拟位址區間。 vm_area_struct結構含有指向vm_operations_struct結構的一個指針, vm_operations_struct描述了在這個區間的操作
##Binder 控制資料結構
###binder_proc
binder_proc和程序相關,使用者空間中每個程序中對應一個核心的binder_proc 結構體。所有程序的binder_proc 結構體用雙連結清單組織。在核心中雙連結清單相關的結構體是 hlist_node,具體使用參考相關API
struct binder_proc {
struct hlist_node proc_node;
struct rb_root threads;
struct rb_root nodes;
struct rb_root refs_by_desc;
struct rb_root refs_by_node;
int pid;
struct vm_area_struct *vma;
struct mm_struct *vma_vm_mm;
struct task_struct *tsk;
struct files_struct *files;
struct hlist_node deferred_work_node;
int deferred_work;
void *buffer;
ptrdiff_t user_buffer_offset;
struct list_head buffers;
struct rb_root free_buffers;
struct rb_root allocated_buffers;
size_t free_async_space;
struct page **pages;
size_t buffer_size;
uint32_t buffer_free;
struct list_head todo;
wait_queue_head_t wait;
struct binder_stats stats;
struct list_head delivered_death;
int max_threads;
int requested_threads;
int requested_threads_started;
int ready_threads;
long default_priority;
struct dentry *debugfs_entry;
};
binder_thread
binder_thread 結構體和使用者線程相關,用來描述使用者空間的線程資訊。binder_proc 結構體中有一個 struct rb_root threads 紅黑樹儲存每個程序的線程資訊。rb_node 是核心中的紅黑樹結構。binder_thread 結構體中有一個 struct rb_node rb_node 域,表示自己的在紅黑樹種的節點。
struct binder_thread {
struct binder_proc *proc;
struct rb_node rb_node;
int pid;
int looper;
struct binder_transaction *transaction_stack;
struct list_head todo;
uint32_t return_error; /* Write failed, return error code in read buf */
uint32_t return_error2; /* Write failed, return error code in read */
/* buffer. Used when sending a reply to a dead process that */
/* we are also waiting on */
wait_queue_head_t wait;
struct binder_stats stats;
};
binder_node
binder_node 在核心中表示一個Binder 服務,代表服務端,也用紅黑樹的方式組織。
struct binder_node {
int debug_id;
struct binder_work work;
union {
struct rb_node rb_node;
struct hlist_node dead_node;
};
struct binder_proc *proc;
struct hlist_head refs;
int internal_strong_refs;
int local_weak_refs;
int local_strong_refs;
binder_uintptr_t ptr;
binder_uintptr_t cookie;
unsigned has_strong_ref:1;
unsigned pending_strong_ref:1;
unsigned has_weak_ref:1;
unsigned pending_weak_ref:1;
unsigned has_async_transaction:1;
unsigned accept_fds:1;
unsigned min_priority:8;
struct list_head async_todo;
};
binder_ref
binder_ref 也表示核心中Binder 的節點,但是和binder_node不同的是binder_ref 表示的是代理端。binder_node 和 binder_ref 是互相關聯的,代表的是一對多的關系,是以在binder_node中,binder_ref 用一個雙連結清單表示 struct hlist_head refs。binder_ref僅僅有一個binder_node的指針,這也和服務端,用戶端的關系對應起來。
struct binder_ref {
/* Lookups needed: */
/* node + proc => ref (transaction) */
/* desc + proc => ref (transaction, inc/dec ref) */
/* node => refs + procs (proc exit) */
int debug_id;
struct rb_node rb_node_desc;
struct rb_node rb_node_node;
struct hlist_node node_entry;
struct binder_proc *proc;
struct binder_node *node;
uint32_t desc;
int strong;
int weak;
struct binder_ref_death *death;
};
binder_work
binder_work 代表一個Binder 事物,具體來說,每次ioctl 産生一個binder_work。
struct binder_work {
struct list_head entry;
enum {
BINDER_WORK_TRANSACTION = 1,
BINDER_WORK_TRANSACTION_COMPLETE,
BINDER_WORK_NODE,
BINDER_WORK_DEAD_BINDER,
BINDER_WORK_DEAD_BINDER_AND_CLEAR,
BINDER_WORK_CLEAR_DEATH_NOTIFICATION,
} type;
};
在核心中這些結構如下圖:
Binder 傳輸資料結構
struct binder_write_read
struct binder_write_read 結構體描述了一次 binder ioctl BINDER_WRITE_READ 從使用者空間需要copy 的資料和需要從核心空間傳回的資料。
/*
* On 64-bit platforms where user code may run in 32-bits the driver must
* translate the buffer (and local binder) addresses appropriately.
*/
struct binder_write_read {
binder_size_t write_size; /* bytes to write */
binder_size_t write_consumed; /* bytes consumed by driver */
binder_uintptr_t write_buffer;
binder_size_t read_size; /* bytes to read */
binder_size_t read_consumed; /* bytes consumed by driver */
binder_uintptr_t read_buffer;
};
Binder 檔案操作
通過struct file_operations 結構體的定義binder 一共支援ioctl, mmap , open ,close, poll flush 這幾種操作,最終要的是三個 open, ioctl mmap. 這三個函數我們前面已經接觸過。
static const struct file_operations binder_fops = {
.owner = THIS_MODULE,
.poll = binder_poll,
.unlocked_ioctl = binder_ioctl,
.compat_ioctl = binder_ioctl,
.mmap = binder_mmap,
.open = binder_open,
.flush = binder_flush,
.release = binder_release,
};
binder_open
- kzalloc 申請binder_proc 空間, 初始化 proc->todo 連結清單,
static int binder_open(struct inode *nodp, struct file *filp)
{
struct binder_proc *proc;
proc = kzalloc(sizeof(*proc), GFP_KERNEL); // 申請binder_proc 記憶體
if (proc == NULL)
return -ENOMEM;
get_task_struct(current); // 擷取目前程序
proc->tsk = current;
proc->vma_vm_mm = current->mm; // mm 代表目前程序的記憶體管理資訊
INIT_LIST_HEAD(&proc->todo); // 初始化 todo 連結清單
init_waitqueue_head(&proc->wait); // 初始化線程排程隊列
proc->default_priority = task_nice(current);
binder_lock(__func__);
binder_stats_created(BINDER_STAT_PROC); // 核心中記錄打開的Binde 驅動次數
hlist_add_head(&proc->proc_node, &binder_procs); //binder_proc 加入到雙向連結清單中
proc->pid = current->group_leader->pid;
INIT_LIST_HEAD(&proc->delivered_death); // 初始化delivered_death binder_proc 雙向連結清單
filp->private_data = proc;
binder_unlock(__func__);
if (binder_debugfs_dir_entry_proc) {
char strbuf[11];
snprintf(strbuf, sizeof(strbuf), "%u", proc->pid);
proc->debugfs_entry = debugfs_create_file(strbuf, S_IRUGO,
binder_debugfs_dir_entry_proc, proc, &binder_proc_fops);
}
return 0;
}
binder_stats
binder_stats_created(BINDER_STAT_PROC) 函數中記錄binder 打開的次數。核心中有一個binder_stats 結構體,描述了7種binder 狀态數量。
enum binder_stat_types {
BINDER_STAT_PROC,
BINDER_STAT_THREAD,
BINDER_STAT_NODE,
BINDER_STAT_REF,
BINDER_STAT_DEATH,
BINDER_STAT_TRANSACTION,
BINDER_STAT_TRANSACTION_COMPLETE,
BINDER_STAT_COUNT
};
struct binder_stats {
int br[_IOC_NR(BR_FAILED_REPLY) + 1];
int bc[_IOC_NR(BC_DEAD_BINDER_DONE) + 1];
int obj_created[BINDER_STAT_COUNT];
int obj_deleted[BINDER_STAT_COUNT];
};
static struct binder_stats binder_stats;
static inline void binder_stats_deleted(enum binder_stat_types type)
{
binder_stats.obj_deleted[type]++;
}
static inline void binder_stats_created(enum binder_stat_types type)
{
binder_stats.obj_created[type]++;
}
binder_mmap
static int binder_mmap(struct file *filp, struct vm_area_struct *vma)
{
int ret;
struct vm_struct *area;
struct binder_proc *proc = filp->private_data; //擷取目前程序的binder_proc 結構體
const char *failure_string;
struct binder_buffer *buffer;
if (proc->tsk != current)
return -EINVAL;
if ((vma->vm_end - vma->vm_start) > SZ_4M) // 最多4M 空間
vma->vm_end = vma->vm_start + SZ_4M;
vma->vm_flags = (vma->vm_flags | VM_DONTCOPY) & ~VM_MAYWRITE;
mutex_lock(&binder_mmap_lock);
if (proc->buffer) { // 已經mmap 傳回
ret = -EBUSY;
failure_string = "already mapped";
goto err_already_mapped;
}
// 申請虛拟空間位址,指的是邏輯空間,在32 位機子上,高端記憶體位址空間是動态配置設定,
64 位不清楚。在這裡隻配置設定了位址,實體記憶體沒有配置設定。
area = get_vm_area(vma->vm_end - vma->vm_start, VM_IOREMAP); if (area == NULL) {
ret = -ENOMEM;
failure_string = "get_vm_area";
goto err_get_vm_area_failed;
}
proc->buffer = area->addr; // proc->buffer 指派,已經配置設定
// 計算核心空間位址和使用者空間位址的偏移量。其實是同一塊記憶體
proc->user_buffer_offset = vma->vm_start - (uintptr_t)proc->buffer;
mutex_unlock(&binder_mmap_lock);
//用于存放核心配置設定的實體頁的頁描述指針:struct page *,每個實體頁對應這樣一個struct page結構
proc->pages = kzalloc(sizeof(proc->pages[0]) * ((vma->vm_end - vma->vm_start) / PAGE_SIZE), GFP_KERNEL);
proc->buffer_size = vma->vm_end - vma->vm_start;
vma->vm_ops = &binder_vm_ops;
vma->vm_private_data = proc;
//為binder記憶體的最開始的一個頁的位址建立虛拟到實體頁的映射,
僅僅一個也,注意傳遞的參數,第二個參數為1, 第四個和第三個參數內插補點為PAGE_SIZE
if (binder_update_page_range(proc, 1, proc->buffer, proc->buffer + PAGE_SIZE, vma)) {
ret = -ENOMEM;
failure_string = "alloc small buf";
goto err_alloc_small_buf_failed;
}
// 每個程序配置設定的buffer 也用雙向連結清單管理
buffer = proc->buffer;
INIT_LIST_HEAD(&proc->buffers);
list_add(&buffer->entry, &proc->buffers);
buffer->free = 1;
//buffer 插入binder_proc 的free_buffer 域的紅黑樹中
binder_insert_free_buffer(proc, buffer);
proc->free_async_space = proc->buffer_size / 2;
barrier();
proc->files = get_files_struct(current);
proc->vma = vma;
proc->vma_vm_mm = vma->vm_mm;
return 0;
binder_buffer
binder_buffer 結構體用來描述mmap 的核心空間記憶體
struct binder_buffer {
struct list_head entry; /* free and allocated entries by address */
struct rb_node rb_node; /* free entry by size or allocated entry */
/* by address */
unsigned free:1;
unsigned allow_user_free:1;
unsigned async_transaction:1;
unsigned debug_id:29;
struct binder_transaction *transaction;
struct binder_node *target_node;
size_t data_size;
size_t offsets_size;
uint8_t data[0];
};
binder_update_page_range
在binder_mmap 函數中,最重要的一個調用是binder_update_page_range,在這個函數中配置設定真正的實體記憶體,然後和頁表映射,最後映射到邏輯位址。
if (binder_update_page_range(proc, 1, proc->buffer, proc->buffer + PAGE_SIZE, vma)) {
}
static int binder_update_page_range(struct binder_proc *proc, int allocate,
void *start, void *end,
struct vm_area_struct *vma)
{
void *page_addr;
unsigned long user_page_addr;
struct page **page;
struct mm_struct *mm;
if (end <= start)
return 0;
if (vma)
mm = NULL;
else
mm = get_task_mm(proc->tsk);
if (mm) {
down_write(&mm->mmap_sem);
vma = proc->vma;
if (vma && mm != proc->vma_vm_mm) {
pr_err("%d: vma mm and task mm mismatch\n",
proc->pid);
vma = NULL;
}
}
if (allocate == 0)
goto free_range;
// 注意在上邊已經注釋過 end - start = PAGE_SIZE 是以這裡隻有一次循環
for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
int ret;
page = &proc->pages[(page_addr - proc->buffer) / PAGE_SIZE];
BUG_ON(*page);
//配置設定一個實體頁,并将該實體頁的struct page指針值存放在proc->pages二維數組中
*page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
ret = map_kernel_range_noflush((unsigned long)page_addr,PAGE_SIZE, PAGE_KERNEL, page);
flush_cache_vmap((unsigned long)page_addr,(unsigned long)page_addr + PAGE_SIZE);
// 計算使用者空間位址, 建立邏輯位址和實體位址的映射
user_page_addr = (uintptr_t)page_addr + proc->user_buffer_offset;
ret = vm_insert_page(vma, user_page_addr, page[0]);
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return 0;
}
binder_ioctl
binder_ioctl 一共有以下幾個指令:
#define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read) // binder 讀寫操作,binder 通信主要用這個指令進行
#define BINDER_SET_IDLE_TIMEOUT _IOW('b', 3, __s64)
#define BINDER_SET_MAX_THREADS _IOW('b', 5, __u32) // 設定最大線程數
#define BINDER_SET_IDLE_PRIORITY _IOW('b', 6, __s32)
#define BINDER_SET_CONTEXT_MGR _IOW('b', 7, __s32) // ServiceManager 使用,标記為ServiceManger binder。
#define BINDER_THREAD_EXIT _IOW('b', 8, __s32) // 線程退出
#define BINDER_VERSION _IOWR('b', 9, struct binder_version) // 版本号
binder_ioctl 從整體上看不複雜,結構還是比較清晰的。在ioctl 最重要的函數是binder_ioctl_write_read,所有的binder 資料傳輸都在這裡完成。這個我們放在後邊分析。
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
if (unlikely(current->mm != proc->vma_vm_mm)) {
pr_err("current mm mismatch proc mm\n");
return -EINVAL;
}
trace_binder_ioctl(cmd, arg);
// binder_stop_on_user_error= 0 是以這裡不阻塞
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
binder_lock(__func__);
// 擷取使用者态調用的線程的資訊,并且加入到 binder_proc threads 的紅黑樹中。
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ:
ret = binder_ioctl_write_read(filp, cmd, arg, thread);
if (ret)
goto err;
break;
case BINDER_SET_MAX_THREADS:
if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) {
ret = -EINVAL;
goto err;
}
break;
case BINDER_SET_CONTEXT_MGR:
ret = binder_ioctl_set_ctx_mgr(filp);
if (ret)
goto err;
break;
case BINDER_THREAD_EXIT:
binder_debug(BINDER_DEBUG_THREADS, "%d:%d exit\n",
proc->pid, thread->pid);
binder_free_thread(proc, thread);
thread = NULL;
break;
case BINDER_VERSION: {
struct binder_version __user *ver = ubuf;
if (size != sizeof(struct binder_version)) {
ret = -EINVAL;
goto err;
}
if (put_user(BINDER_CURRENT_PROTOCOL_VERSION,
&ver->protocol_version)) {
ret = -EINVAL;
goto err;
}
break;
}
default:
ret = -EINVAL;
goto err;
}
ret = 0;
err:
// 标記 thread looper 的狀态
if (thread)
thread->looper &= ~BINDER_LOOPER_STATE_NEED_RETURN;
binder_unlock(__func__);
wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret && ret != -ERESTARTSYS)
pr_info("%d:%d ioctl %x %lx returned %d\n", proc->pid, current->pid, cmd, arg, ret);
err_unlocked:
trace_binder_ioctl_done(ret);
return ret;
}
ServiceManger 與驅動的互動
ServiceManger 中一次調用了下面四個函數,前面已經分析了核心中這幾個API,那看下這幾次調用到底做了什麼工作。
- open("/dev/binder", ORDWR | OCLOEXEC)
- ioctl(bs->fd, BINDER_VERSION, &vers)
- mmap(NULL, mapsize, PROTREAD, MAPPRIVATE, bs->fd, 0)
- ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
- ioctl(bs->fd, BINDER_WRITE_READ, &bwr); bwr 資料中有 BC_ENTER_LOOPER
- ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
open
open 函數計較簡單,在上面的分析中在open 建立 binder_proc 雙向連結清單,初始化程序相關的資訊,初始化紅黑樹。
ioctl BINDER_VERSION
第一次調用 ioctl, 指令字為:BINDER_VERSION
case BINDER_VERSION: {
struct binder_version __user *ver = ubuf;
if (size != sizeof(struct binder_version)) {
ret = -EINVAL;
goto err;
}
if (put_user(BINDER_CURRENT_PROTOCOL_VERSION,
&ver->protocol_version)) {
ret = -EINVAL;
goto err;
}
break;
把核心中的Binder Version 放到傳遞到核心空間的使用者空間位址中。使用者空間可以判斷下版本号是否一緻。
mmap
在 mmap 中配置設定虛拟空間位址,配置設定一個頁大小的實體空間,建立核心空間位址和使用者控件位址的映射
ioctl BINDER_SET_CONTEXT_MGR
case BINDER_SET_CONTEXT_MGR:
ret = binder_ioctl_set_ctx_mgr(filp);
if (ret)
goto err;
break;
binder_ioctl_set_ctx_mgr 幹了一件事情, binder_new_node, 注意最後的兩個參數是0,0.
- binder_new_node首先在binder_proc 的nodes 函數中尋找合适的插入位置,由于是第一次調用,這時還沒有任何的節點插入紅黑樹。
- kzalloc 配置設定binder_node 節點
- node 節點插入紅黑樹,
- node->debug_id = ++binder_last_id; 注意 binder_last_id 為全局靜态變量,是以 node->debug_id = 1;
- prt 和cook 域複制,都是0。0代表ServiceManager.
到這裡,binder 驅動的第一個binder_node 節點建立起來
static int binder_ioctl_set_ctx_mgr(struct file *filp)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
kuid_t curr_euid = current_euid();
......
binder_context_mgr_node = binder_new_node(proc, 0, 0);
if (binder_context_mgr_node == NULL) {
ret = -ENOMEM;
goto out;
}
binder_context_mgr_node->local_weak_refs++;
binder_context_mgr_node->local_strong_refs++;
binder_context_mgr_node->has_strong_ref = 1;
binder_context_mgr_node->has_weak_ref = 1;
out:
return ret;
}
static struct binder_node *binder_new_node(struct binder_proc *proc,
binder_uintptr_t ptr,
binder_uintptr_t cookie)
{
struct rb_node **p = &proc->nodes.rb_node;
struct rb_node *parent = NULL;
struct binder_node *node;
// 第一調用這個函數, binder_proc 的node 節點為空,還沒有node *p== null
while (*p) {
parent = *p;
node = rb_entry(parent, struct binder_node, rb_node);
if (ptr < node->ptr)
p = &(*p)->rb_left;
else if (ptr > node->ptr)
p = &(*p)->rb_right;
else
return NULL;
}
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL)
return NULL;
binder_stats_created(BINDER_STAT_NODE);
rb_link_node(&node->rb_node, parent, p);
rb_insert_color(&node->rb_node, &proc->nodes);
node->debug_id = ++binder_last_id;
node->proc = proc;
node->ptr = ptr;
node->cookie = cookie;
node->work.type = BINDER_WORK_NODE;
INIT_LIST_HEAD(&node->work.entry);
INIT_LIST_HEAD(&node->async_todo);
return node;
}
ioctl BINDER_WRITE_READ 和 BC_ENTER_LOOPER
在這次調用中還是來到了我們前面跳過的binder_ioctl_write_read函數。
ServiceManager 調用
首先看下調用的代碼,注意bwr.write_buffer 所指區域的資料 readbuf[0] = BC_ENTER_LOOPER;
{
uint32_t readbuf[32];
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
}
int binder_write(struct binder_state *bs, void *data, size_t len)
{
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (uintptr_t) data;
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
return res;
}
binder_ioctl_write_read
binder ioctl 進入核心,擷取目前線程的結構體 binder_thread;
thread = binder_get_thread(proc);
case BINDER_WRITE_READ:
ret = binder_ioctl_write_read(filp, cmd, arg, thread);
if (ret)
goto err;
break;
static int binder_ioctl_write_read(struct file *filp,
unsigned int cmd, unsigned long arg,
struct binder_thread *thread)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;
if (size != sizeof(struct binder_write_read)) {
ret = -EINVAL;
goto out;
}
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
if (bwr.write_size > 0) {
ret = binder_thread_write(proc, thread,
bwr.write_buffer,
bwr.write_size,
&bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) {
......
}
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
out:
return ret;
}
binder_ioctl_write_read 中
- copy_from_user 把binder_write_read 結構體從使用者空間copy 進來。
- bwr.write_size > 0 并且 bwr.read_size ==0. 來到了binder_thread_write。
- while 循環,每次從使用者空間中讀取一個 int 大小的資料,實際是從 調用的 uint32_t readbuf[32] 中讀取,隻有 readbuf[0]= BC_ENTER_LOOPER。
- 和線程操作相關的cmd 一共三個,所有的操作都是對 binder_thread looper |= 操作。标記對應的線程狀态。
- binder_ioctl_write_read 傳回, ioctl 傳回。是以這一步無阻塞。
binder_thread loop 标記
cmd | 功能 | loop enum |
---|---|---|
BC_REGISTER_LOOPER | 代理線程注冊looper | BINDER_LOOPER_STATE_REGISTERED = 0x01 |
BC_ENTER_LOOPER | 主線程循環 | BINDER_LOOPER_STATE_ENTERED = 0x02 |
BC_EXIT_LOOPER | 線程退出 | BINDER_LOOPER_STATE_EXITED = 0x04 |
BINDER_LOOPER_STATE_INVALID = 0x08 | ||
BINDER_LOOPER_STATE_WAITING = 0x10 | ||
BINDER_LOOPER_STATE_NEED_RETURN = 0x20 |
binder_thread_write
static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed)
{
uint32_t cmd;
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
while (ptr < end && thread->return_error == BR_OK) {
if (get_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
trace_binder_command(cmd);
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
binder_stats.bc[_IOC_NR(cmd)]++;
proc->stats.bc[_IOC_NR(cmd)]++;
thread->stats.bc[_IOC_NR(cmd)]++;
}
switch (cmd) {
......
case BC_REGISTER_LOOPER:
if (thread->looper & BINDER_LOOPER_STATE_ENTERED) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
} else if (proc->requested_threads == 0) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
proc->pid, thread->pid);
} else {
proc->requested_threads--;
proc->requested_threads_started++;
}
thread->looper |= BINDER_LOOPER_STATE_REGISTERED;
break;
case BC_ENTER_LOOPER:
if (thread->looper & BINDER_LOOPER_STATE_REGISTERED) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
}
thread->looper |= BINDER_LOOPER_STATE_ENTERED;
break;
case BC_EXIT_LOOPER:
thread->looper |= BINDER_LOOPER_STATE_EXITED;
break;
......
default:
return -EINVAL;
}
*consumed = ptr - buffer;
}
return 0;
}
總結: ioctl BC_ENTER_LOOPER 就是标記紅黑樹中的binder_thread 的狀态。
ioctl(bs->fd, BINDER_WRITE_READ, &bwr)
ServiceManger 調用
再看下這步的調用代碼, (binder_write 裡面好像定義過binder_write_read,這段代碼是不是可以複用呢,總是能看到這樣需要改進的神奇代碼), 這次binder_write_read的bwr.read_size > 0 進入了讀模式。
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
binder_ioctl_write_read
binder_ioctl-> binder_ioctl_write_read -> binder_thread_read
static int binder_ioctl_write_read(struct file *filp,
unsigned int cmd, unsigned long arg,
struct binder_thread *thread)
{
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
if (bwr.write_size > 0) {
......
}
if (bwr.read_size > 0) {
// 調用open 的時候沒有設定O_NONBLOCK 标記,filp->f_flags & O_NONBLOCK == 0
ret = binder_thread_read(proc, thread, bwr.read_buffer,
bwr.read_size,
&bwr.read_consumed,
filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
if (!list_empty(&proc->todo))
wake_up_interruptible(&proc->wait);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
out:
return ret;
}
binder_thread_read
binder_thread_read 阻塞 wait_event_freezable_exclusive, 這時候ServiceManager 進入阻塞狀态
static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block)
{
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
int ret = 0;
int wait_for_proc_work;
if (*consumed == 0) {
if (put_user(BR_NOOP, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
}
retry:
// 第一次進來 transaction_stack == null, todo連結清單也為空,wait_for_proc_work = true
wait_for_proc_work = thread->transaction_stack == NULL &&
list_empty(&thread->todo);
// 線程狀态
thread->looper |= BINDER_LOOPER_STATE_WAITING;
// ready_threads 計數加一 這裡是1, 表示一個等待線程
if (wait_for_proc_work)
proc->ready_threads++;
binder_unlock(__func__);
if (wait_for_proc_work) {
if (!(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED))) {
proc->pid, thread->pid, thread->looper);
wait_event_interruptible(binder_user_error_wait,
binder_stop_on_user_error < 2);
}
binder_set_nice(proc->default_priority);
if (non_block) {
if (!binder_has_proc_work(proc, thread))
ret = -EAGAIN;
} else
// 代碼會來到這裡阻塞 ,binder_has_proc_work 判斷 todo 隊列是否為空,為空則阻塞
ret = wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread));
} else {
if (non_block) {
if (!binder_has_thread_work(thread))
ret = -EAGAIN;
} else
ret = wait_event_freezable(thread->wait, binder_has_thread_work(thread));
}
......
}