Merge sort 算法的思想就是把數組分成更小的數組,合并的時候再排序。由于是二分,是以總的時間為 T(n) = 2 T(n/2) + \theta (n) = O(n * lgn)。
public void mergeSort(int[] array, int start, int end) {
if (start < end) {
int mid = start + (end - start) / 2;
mergeSort(array, start, mid);
mergeSort(array, mid + 1, end);
merge(array, start, mid, end);
}
}
public void merge(int[] array, int start, int mid, int end) {
int[] temp1 = new int[mid - start + 2];
int[] temp2 = new int[end - mid + 1];
for (int i = start; i <= mid; i++) {
temp1[i - start] = array[i];
}
temp1[mid - start + 1] = Integer.MAX_VALUE;
for (int i = mid + 1; i <= end; i++) {
temp2[i - mid - 1] = array[i];
}
temp2[end - mid] = Integer.MAX_VALUE;
int p1 = 0; //pointer of temp1 array
int p2 = 0; //pointer of temp2 array
//alert, not index = 0
int index = start;
//the while loop will stop if at least one of the array is empty
while ((p1 < mid - start + 1) && (p2 < end - mid)) {
if (temp1[p1] <= temp2[p2]) {
array[index++] = temp1[p1++];
} else {
array[index++] = temp2[p2++];
}
}
//check whether temp1 is empty
if (p1 == mid - start + 1) {
//alert, not p2 != end - mid - 1
while (p2 != end - mid) {
array[index++] = temp2[p2++];
}
}
//check whether temp2 is empty
if (p2 == end - mid) {
//alert, not p1 != mid - start;
while (p1 != mid - start + 1) {
array[index++] = temp1[p1++];
}
}
}
注意,有很多人寫的 mergesort 都不能處理當數組中有多個 Integer.MAX_VALUE的情況。但是,本文的算法是可以的。
轉載請注明出處:http://blog.csdn.net/beiyeqingteng