天天看點

s3c2440的2440init.s詳解

;=========================================

; NAME: 2440INIT.S

; DESC: C start up codes

;       Configure memory, ISR ,stacks

;        Initialize C-variables

; HISTORY:

; 2002.02.25:kwtark: ver 0.0

; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode

; 2003.03.14:DonGo: Modified for 2440.

;=========================================

//彙編不能使用include包含頭檔案是以用Get,彙編也不認識*.h 檔案,隻能用*.inc,這三條是頭檔案包含的意思

        GET option.inc; 

         GET memcfg.inc 

         GET 2440addr.inc 

BIT_SELFREFRESH EQU  (1<<22)  //EQU的作用和#define相似

;Pre-defined constants

USERMODE    EQU       0x10

FIQMODE     EQU        0x11

IRQMODE     EQU        0x12

SVCMODE     EQU        0x13

ABORTMODE   EQU     0x17

UNDEFMODE   EQU     0x1b

MODEMASK    EQU     0x1f

NOINT       EQU          0xc0

;The location of stacks

UserStack  EQU (_STACK_BASEADDRESS-0x3800)     ;0x33ff4800 ~

SVCStack   EQU (_STACK_BASEADDRESS-0x2800)     ;0x33ff5800 ~

UndefStack         EQU (_STACK_BASEADDRESS-0x2400)     ;0x33ff5c00 ~

AbortStack          EQU (_STACK_BASEADDRESS-0x2000)     ;0x33ff6000 ~

IRQStack   EQU (_STACK_BASEADDRESS-0x1000)     ;0x33ff7000 ~

FIQStack   EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~

;Check if tasm.exe(armasm -16 [email protected] 1.0) is used.  //16位編譯環境使用tasm.exe編譯

         GBLL    THUMBCODE  //GBLL僞操作聲明一個全局的邏輯變量,并将其初始化成FALSE

//CONFIG ADS定義的内部變量,屬于内置變量,含義為:如果彙編器編譯的為ARM指令,其{CONFIG} 傳回為32,

//如果彙編器編譯的為T指令,其{CONFIG} 傳回為16。 {}代表引用該變量名

         [ {CONFIG} = 16  //"["表示"if","|"表示"else","]"表示"endif"

THUMBCODE SETL  {TRUE}  //SETL指派運算,L表示用于給一個邏輯變量指派

             CODE32

//CODE16僞指令通知編譯器,其後的指令序列為16位的Thumb指令。

//CODE32僞指令通知編譯器,其後的指令序列為32位的ARM指令。

//另一方面暫且把處理器設定成為ARM模式,以友善初始化

                  |

THUMBCODE SETL  {FALSE}

    ]

//MACRO僞操作辨別宏定義的開始,MEND辨別宏定義的結束。用MACRO及MEND定義一段代碼,稱為宏定義//體,這樣在程式中就可以通過宏指令多次調用該代碼段。

                  MACRO

         MOV_PC_LR

                  [ THUMBCODE

         bx lr   // bx lr的作用等同于mov  pc,lr

                  |  // ARM體系結構中LR的特殊用途有兩種:一是用來儲存子程式傳回位址;二是當異常發生時,LR中//儲存的值等于異常發生時PC的值減4(或者減2),是以在各種異常模式下可以根據LR的值傳回到異常發生前的//相應位置繼續執行。

             mov    pc,lr

                  ]

         MEND

                  MACRO

         MOVEQ_PC_LR

                  [ THUMBCODE

        bxeq lr  //相等則跳轉,相等與否由寄存器某些位确定,在此處,由其上一句的指令執行結果決定

                  |

             moveq pc,lr

                  ]

         MEND

                  MACRO

$HandlerLabel HANDLER $HandleLabel

//$HandlerLabel 和 $HandleLabel是兩個參數,第一個參數和第二個參數是不一樣的,中間少了個r,而第一個參數//在本宏中是一個标号,而第二個函數是一個入口位址。

$HandlerLabel

         sub    sp,sp,#4     ;decrement sp(to store jump address)

         stmfd         sp!,{r0}     ;PUSH the work register to stack(lr does not push because it return to original address)

         ldr     r0,=$HandleLabel;load the address of HandleXXX to r0

//ldr完成從存儲器中裝載資料到通用寄存器

         ldr     r0,[r0]   ;load the contents(service routine start address) of HandleXXX

         str     r0,[sp,#4]      ;store the contents(ISR) of HandleXXX to stack

//str是寄存器資料到記憶體,即存儲

         ldmfd   sp!,{r0,pc}     ;POP the work register and pc(jump to ISR)  //感歎号表示更新寄存器值

         MEND

         IMPORT  |Image$$RO$$Base|    ; Base of ROM code

         IMPORT  |Image$$RO$$Limit|  ; End of ROM code (=start of ROM data)

         IMPORT  |Image$$RW$$Base|   ; Base of RAM to initialise

         IMPORT  |Image$$ZI$$Base|   ; Base and limit of area

         IMPORT  |Image$$ZI$$Limit|  ; to zero initialise

         IMPORT   MMU_SetAsyncBusMode

         IMPORT   MMU_SetFastBusMode      ;

         IMPORT  Main    ; The main entry of mon program

         IMPORT  CopyProgramFromNand  //引入外部的函數

//AREA 指令訓示彙程式設計式彙編一個新的代碼段或資料段。段是獨立的、指定的、不可見的,它們由連結程式處理。

         AREA    Init,CODE,READONLY  //AREA 段名,屬性,屬性

         ENTRY  //ENTRY僞操作用于指定彙程式設計式的入口點

         EXPORT   __ENTRY  //EXPORT 僞指令用于在程式中聲明一個全局的标号,該标号可在其他的檔案中引用。

__ENTRY

ResetEntry 

//ResetEntry的值在ARM上電運作時是0X00000000,在JTAG仿真時是0X30000000。這個值在拷貝程式時會用到。

         ;1)The code, which converts to Big-endian, should be in little endian code.

         ;2)The following little endian code will be compiled in Big-Endian mode.

         ;  The code byte order should be changed as the memory bus width.

         ;3)The pseudo instruction,DCD can not be used here because the linker generates error.

         ASSERT    :DEF:ENDIAN_CHANGE  // ASSERT 是斷言僞指令,文法是:ASSERT +邏輯表達式

// def 是邏輯僞操作符,格式為: :DEF:label,作用是:判斷label是否定義過

         [ ENDIAN_CHANGE

             ASSERT  :DEF:ENTRY_BUS_WIDTH

             [ ENTRY_BUS_WIDTH=32

                   b       ChangeBigEndian             ;DCD 0xea000007  // ChangeBigEndian标号在下文,這句作用為32位長度時跳轉到ChangeBigEndian處

             ]

             [ ENTRY_BUS_WIDTH=16

                   andeq         r14,r7,r0,lsl #20   ;DCD 0x0007ea00  //16位跳轉到ChangeBigEndian處,長度不同則指令不同

             ]

             [ ENTRY_BUS_WIDTH=8

                   streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea  //8位跳轉到ChangeBigEndian處,長度不同則指令不同

             ]

         |

             b         ResetHandler  //當沒有定義總線寬度時跳轉到複位中斷處,這條語句放在0x00處

]

//啟動代碼開始是一個異常向量表,這個向量表是固定的,由處理器決定,必須要放在0x0位址那個地方,這個跟51單片機的中斷向量表相類似。

//Q:既然ResetEntry的位址是0x0,那麼為什麼上面的指令隻占了4個位元組?

//A:因為上面的指令,ASSERT以及[等都是僞指令,不會編譯為代碼

         b       HandlerUndef     ;handler for Undefined mode  //0x04

         b       HandlerSWI        ;handler for SWI interrupt  //0x08

         b       HandlerPabort     ;handler for PAbort  //0x0C

         b       HandlerDabort    ;handler for DAbort  //0x10

         b       .                  ;reserved  //0x14

         b       HandlerIRQ        ;handler for IRQ interrupt  //0x18

         b       HandlerFIQ         ;handler for FIQ interrupt  //0x1C

;@0x20

         b       EnterPWDN       ; Must be @0x20.

ChangeBigEndian  //标号

;@0x24

        [ ENTRY_BUS_WIDTH=32  //DCD指令用于配置設定一片連續的字存儲單元并用指定的資料初始化。

             DCD  0xee110f10          ;0xee110f10 => mrc p15,0,r0,c1,c0,0

             DCD  0xe3800080         ;0xe3800080 => orr r0,r0,#0x80;  //Big-endian

             DCD  0xee010f10          ;0xee010f10 => mcr p15,0,r0,c1,c0,0

         ]

         [ ENTRY_BUS_WIDTH=16

             DCD 0x0f10ee11

             DCD 0x0080e380

             DCD 0x0f10ee01

         ]

         [ ENTRY_BUS_WIDTH=8

             DCD 0x100f11ee

             DCD 0x800080e3

             DCD 0x100f01ee

    ]

         DCD 0xffffffff  ;swinv 0xffffff is similar with NOP and run well in both endian mode.

         DCD 0xffffffff  //填充作用

         DCD 0xffffffff

         DCD 0xffffffff

         DCD 0xffffffff

         b ResetHandler

HandlerFIQ      HANDLER HandleFIQ  //通過宏的名稱HANDLER調用宏,其中宏的标号為HandlerFIQ

HandlerIRQ      HANDLER HandleIRQ

HandlerUndef    HANDLER HandleUndef

HandlerSWI      HANDLER HandleSWI

HandlerDabort   HANDLER HandleDabort

HandlerPabort   HANDLER HandlePabort

IsrIRQ

         sub    sp,sp,#4  //reserved for PC,給PC寄存器保留的值

         stmfd         sp!,{r8-r9}  //把r8-r9壓入棧

         ldr     r9,=INTOFFSET  // ldr完成從存儲器中裝載資料到通用寄存器

         ldr     r9,[r9]

         ldr     r8,=HandleEINT0  //這就是我們第二個中斷向量表的入口的,先裝入r8

         add    r8,r8,r9,lsl #2  //lsl #2表示r9左移兩位

         ldr     r8,[r8]

         str     r8,[sp,#8]  //str是寄存器資料到記憶體,即存儲

         ldmfd         sp!,{r8-r9,pc}  //出棧操作,感歎号表示更新寄存器值

// LTORG用于聲明一個資料緩沖池,(也稱為文字池)的開始。在使用僞指令LDR時,常常需要在适當的地方加入LTORG聲明資料緩沖池,LDR加載的資料暫時被編譯器放于資料緩沖池中。LTORG僞操作通常放在無條件跳轉指令之後,或者子程式傳回指令之後,這樣處理器就不會錯誤的将資料緩沖池中的資料當作指令來執行。

         LTORG

;=======

; ENTRY

;=======

ResetHandler

         ldr     r0,=WTCON       ;watch dog disable

         ldr     r1,=0x0

         str     r1,[r0]

         ldr     r0,=INTMSK

         ldr     r1,=0xffffffff  ;all interrupt disable

         str     r1,[r0]

         ldr     r0,=INTSUBMSK

         ldr     r1,=0x7fff            ;all sub interrupt disable

         str     r1,[r0]

         [ {TRUE}

         ;rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);

         ; Led_Display

         ldr     r0,=GPBCON

         ldr     r1,=0x00555555

         str     r1,[r0]

         ldr     r0,=GPBDAT

         ldr     r1,=0x07fe

         str     r1,[r0]

         ]

         ;To reduce PLL lock time, adjust the LOCKTIME register.

         ldr     r0,=LOCKTIME

         ldr     r1,=0xffffff

         str     r1,[r0]

    [ PLL_ON_START

         ; Added for confirm clock divide. for 2440.

         ; Setting value Fclk:Hclk:Pclk

         ldr     r0,=CLKDIVN

         ldr     r1,=CLKDIV_VAL                ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.

         str     r1,[r0]

;        MMU_SetAsyncBusMode and MMU_SetFastBusMode over 4K, so do not call here

;        call it after copy

;        [ CLKDIV_VAL>1               ; means Fclk:Hclk is not 1:1.

;        bl MMU_SetAsyncBusMode

;        |

;        bl MMU_SetFastBusMode  ; default value.

;        ]

// MMU_SetAsyncBusMode 和 MMU_SetFastBusMode 都在4K代碼以上, 如果你想你編譯出來的程式能在NAND上運作的話,就不要在這調用這兩函數了不能用這兩函數,自己寫還不行嗎,下面的代碼這這麼來了,實作和上面兩函數一樣的功能

         ;program has not been copied, so use these directly

         [ CLKDIV_VAL>1               ; means Fclk:Hclk is not 1:1.

         mrc p15,0,r0,c1,c0,0

         orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA

         mcr p15,0,r0,c1,c0,0

         |

         mrc p15,0,r0,c1,c0,0

         bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF

         mcr p15,0,r0,c1,c0,0

         ]

         ;Configure UPLL

         ldr     r0,=UPLLCON

         ldr     r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV) 

         str     r1,[r0]

         nop   ; Caution: After UPLL setting, at least 7-clocks delay must be inserted for

setting hardware be completed.

         nop

         nop

         nop

         nop

         nop

         nop

         ;Configure MPLL

         ldr     r0,=MPLLCON

         ldr     r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV)  ;Fin=16.9344MHz

         str     r1,[r0]

    ]

         ;Check if the boot is caused by the wake-up from SLEEP mode.

         ldr     r1,=GSTATUS2

         ldr     r0,[r1]

         tst     r0,#0x2

         ;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler.

     bne  WAKEUP_SLEEP  //檢視是否是由睡眠狀态啟動,如果是則跳轉到WAKEUP_SLEEP狀态

         EXPORT StartPointAfterSleepWakeUp

StartPointAfterSleepWakeUp

         ;Set memory control registers

        ;ldr    r0,=SMRDATA

        adrl   r0, SMRDATA   ;be careful!

         ldr     r1,=BWSCON    ;BWSCON Address

         add    r2, r0, #52  ;End address of SMRDATA

         ldr     r3, [r0], #4

         str     r3, [r1], #4

         cmp  r2, r0

         bne    %B0

; check if EIN0 button is pressed  //如果 EINT0 産生(這中斷就是我們按鍵産生的), 就清除SDRAM

       ldr          r0,=GPFCON

         ldr     r1,=0x0

         str     r1,[r0]

         ldr     r0,=GPFUP

         ldr     r1,=0xff

         str     r1,[r0]

         ldr     r1,=GPFDAT

         ldr     r0,[r1]

       bic         r0,r0,#(0x1e<<1)  ; bit clear

         tst     r0,#0x1

         bne %F1  //如果沒有按,就跳到後面的1标号處 => Initialize stacks

; Clear SDRAM Start  //如果按下鍵則進行清除SDRAM的操作

         ldr     r0,=GPFCON

         ldr     r1,=0x55aa

         str     r1,[r0]

;        ldr     r0,=GPFUP

;        ldr     r1,=0xff

;        str     r1,[r0]

         ldr     r0,=GPFDAT

         ldr     r1,=0x0

         str     r1,[r0]        ;LED=****

         mov r1,#0

         mov r2,#0

         mov r3,#0

         mov r4,#0

         mov r5,#0

         mov r6,#0

         mov r7,#0

         mov r8,#0

         ldr     r9,=0x4000000   ;64MB

         ldr     r0,=0x30000000

0       //0表示局部标号,可以重複出現

         stmia r0!,{r1-r8}

         subs  r9,r9,#32

         bne    %B0  //%B 代表,往前搜尋 lable為0的行;bne %F1,這是向後搜尋lable為1的行

;Clear SDRAM End

1

                  ;Initialize stacks

         bl      InitStacks 

;===========================================================

// BL指令在轉移到子程式執行之前,将其下一條指令的位址拷貝到R14(LR,連結寄存器)。由于BL指令儲存了下條指令的位址,是以使用指令“MOV PC ,LR”即可實作子程式的傳回。

         ldr     r0, =BWSCON

         ldr     r0, [r0]  //BWSCON的[2:1]反映了外部引腳OM[1:0]:若OM[1:0] != 00, 從NOR FLash啟動或直接在記憶體運作;若OM[1:0]==00,則為Nand Flash Mode

         ands  r0, r0, #6             //#6 == 0110 --> BWSCON[2:1]

         bne    copy_proc_beg            //OM[1:0] != 00,NOR FLash boot,不讀取NAND FLASH

         adr    r0, ResetEntry              ;OM[1:0] == 0, NAND FLash boot

         cmp  r0, #0                                     ;if use Multi-ice,  //如果R0等于0,那麼它就将狀态寄存器中的Z置為1

//如果是0才是真正從NAND 啟動,因為其4k被複制到0位址開始的stepingstone 内部sram中, 如果!=0,說明在using ice, 這種情況也不讀取NAND FLASH, JTAG調試時是直接下載下傳到SDRAM中運作,不需要再從nand拷貝

         bne    copy_proc_beg            ;do not read nand flash for boot  //不為0就跳轉

         ;nop

;===========================================================

nand_boot_beg  //這一段代碼完成從NAND Flash讀代碼到RAM

         [ {TRUE}  //個人感覺是宏名使用值的時候加{},變量的話就不用了。。。

         bl CopyProgramFromNand  // CopyProgramFromNand是一個外部的函數

         |

         mov  r5, #NFCONF  //首先設定NAND的一些控制寄存器

         ;set timing value

         ldr     r0,     =(7<<12)|(7<<8)|(7<<4)

         str     r0,     [r5]

         ;enable control

         ldr     r0, =(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0)

         str     r0, [r5, #4]

         bl      ReadNandID  //按着讀取NAND的ID号,結果儲存在r5裡

         mov  r6, #0

         ldr     r0, =0xec73  //期望的NAND ID号

         cmp  r5,     r0

         beq    %F1

         ldr     r0, =0xec75  //期望的另一個NAND ID号

         cmp  r5, r0

         beq    %F1  //相等的話就跳到下一個1标号處

         mov  r6, #1  //不相等,設定r6=1

1      

         bl      ReadNandStatus  //讀取NAND狀态,結果放在r1裡

         mov  r8, #0  //r8設初值0,意義為頁号

         ldr     r9, =ResetEntry  //這裡使用的是ldr僞指令,而不是上面用的adr僞指令,它加載的是ResetEntry的絕對位址,也就是我們期望的RAM中的位址,在這裡,它和|Image$$RO$$Base|一樣

2      

         ands  r0, r8, #0x1f  //凡r8為0x1f(32)的整數倍-1,eq有效,ne無效

         bne             %F3

         mov            r0, r8

         bl                CheckBadBlk

         cmp            r0, #0

         addne         r8, r8, #32  //存在壞塊的話就跳過這個壞塊: + 32得到下一塊. 故: r8 = blockpage addr,因為讀寫是按頁進行的(每頁512Byte)

         bne             %F4

3      

         mov  r0, r8

         mov  r1, r9

         bl      ReadNandPage

         add    r9, r9, #512  //每一頁的大小是512Bytes

         add    r8, r8, #1

4      

         cmp  r8, #5120  //比較是否讀完5120頁即2.5M Bytes

         bcc    %B2

         mov  r5, #NFCONF                       ;DsNandFlash

         ldr     r0, [r5, #4]

         bic r0, r0, #1

         str     r0, [r5, #4]

         ]

         ldr     pc, =copy_proc_beg

;===========================================================

copy_proc_beg

         adr    r0, ResetEntry

         ldr     r2, BaseOfROM

         cmp  r0, r2  //比較 ResetEntry 和 BaseOfROM

         ldreq r0, TopOfROM  //如果相等的話(在記憶體運作 --- ice -- 無需複制code區中的ro段,但需要複制code區中的rw段),TopOfROM->r0

         beq    InitRam     

//下面這個是針對代碼在NOR FLASH時的拷貝方法功能為把從ResetEntry起,TopOfROM-BaseOfROM大小的資料拷到BaseOfROM //TopOfROM和BaseOfROM為|Image$$RO$$Limit|和|Image$$RO$$Base||Image$$RO$$Limit|和|Image$$RO$$Base|由連接配接器生成為生成

//的代碼的代碼段運作時的起啟和終止位址BaseOfBSS和BaseOfZero為|Image$$RW$$Base|和|Image$$ZI$$Base| |Image$$RW$$Base|和//|Image$$ZI$$Base|也是由連接配接器生成兩者之間就是初始化資料的存放地

         ldr r3, TopOfROM

         ldmia r0!, {r4-r7}  //開始時,r0 = ResetEntry --- source

         stmia r2!, {r4-r7}  //開始時,r2 = BaseOfROM  --- destination

         cmp  r2, r3  //終止條件:複制了TopOfROM-BaseOfROM大小

         bcc    %B0

         sub    r2, r2, r3

         sub    r0, r0, r2                                

InitRam     

         ldr     r2, BaseOfBSS

         ldr     r3, BaseOfZero  

         cmp  r2, r3

         ldrcc  r1, [r0], #4

         strcc  r1, [r2], #4

         bcc    %B0

         mov  r0,     #0

         ldr     r3,     EndOfBSS

1      

         cmp  r2,     r3

         strcc  r0, [r2], #4

         bcc    %B1

         ldr     pc, =%F2            ;goto compiler address

2

;        [ CLKDIV_VAL>1               ; means Fclk:Hclk is not 1:1.

;        bl      MMU_SetAsyncBusMode

;        |

;        bl MMU_SetFastBusMode  ; default value.

;        ]

         ;bl     Led_Test

;===========================================================

       ; Setup IRQ handler

         ldr     r0,=HandleIRQ       ;This routine is needed

         ldr     r1,=IsrIRQ   ;if there is not 'subs pc,lr,#4' at 0x18, 0x1c

         str     r1,[r0]

;        ;Copy and paste RW data/zero initialized data

;        ldr     r0, =|Image$$RO$$Limit| ; Get pointer to ROM data

;        ldr     r1, =|Image$$RW$$Base|  ; and RAM copy

;        ldr     r3, =|Image$$ZI$$Base|

;

;        ;Zero init base => top of initialised data

;        cmp  r0, r1      ; Check that they are different

;        beq    %F2

;1

;        cmp  r1, r3      ; Copy init data

;        ldrcc  r2, [r0], #4    ;--> LDRCC r2, [r0] + ADD r0, r0, #4

;        strcc  r2, [r1], #4    ;--> STRCC r2, [r1] + ADD r1, r1, #4

;        bcc    %B1

;2

;        ldr     r1, =|Image$$ZI$$Limit| ; Top of zero init segment

;        mov  r2, #0

;3

;        cmp  r3, r1      ; Zero init

;        strcc  r2, [r3], #4

;        bcc    %B3

    [ :LNOT:THUMBCODE  // L是logic邏輯  NOT就是not判斷THUMBCODE的邏輯真假

                  bl      Main ;Do not use main() because ......

                  ;ldr    pc, =Main  ;

                  b       .

    ]

    [ THUMBCODE ;for start-up code for Thumb mode

                  orr     lr,pc,#1

                  bx      lr

                  CODE16

                  bl      Main ;Do not use main() because ......

                  b       .

                   CODE32

    ]

;function initializing stacks

InitStacks

         ;Do not use DRAM,such as stmfd,ldmfd......

         ;SVCstack is initialized before

         ;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1'

         mrs   r0,cpsr

         bic     r0,r0,#MODEMASK

         orr     r1,r0,#UNDEFMODE|NOINT

         msr   cpsr_cxsf,r1                  ;UndefMode

         ldr     sp,=UndefStack           ; UndefStack=0x33FF_5C00

         orr     r1,r0,#ABORTMODE|NOINT

         msr   cpsr_cxsf,r1                  ;AbortMode

         ldr     sp,=AbortStack            ; AbortStack=0x33FF_6000

         orr     r1,r0,#IRQMODE|NOINT

         msr   cpsr_cxsf,r1                  ;IRQMode

         ldr     sp,=IRQStack              ; IRQStack=0x33FF_7000

         orr     r1,r0,#FIQMODE|NOINT

         msr   cpsr_cxsf,r1                  ;FIQMode

         ldr     sp,=FIQStack               ; FIQStack=0x33FF_8000

         bic     r0,r0,#MODEMASK|NOINT

         orr     r1,r0,#SVCMODE

         msr   cpsr_cxsf,r1                  ;SVCMode

         ldr     sp,=SVCStack              ; SVCStack=0x33FF_5800

         ;USER mode has not be initialized.

         mov  pc,lr

         ;The LR register will not be valid if the current mode is not SVC mode.

;===========================================================

         [ {TRUE}

         |

ReadNandID

         mov      r7,#NFCONF

         ldr      r0,[r7,#4]               ;NFChipEn();

         bic      r0,r0,#2

         str      r0,[r7,#4]

         mov      r0,#0x90              ;WrNFCmd(RdIDCMD);

         strb     r0,[r7,#8]

         mov      r4,#0                   ;WrNFAddr(0);

         strb     r4,[r7,#0xc]

1                                                               ;while(NFIsBusy());

         ldr      r0,[r7,#0x20]

         tst      r0,#1

         beq      %B1

         ldrb     r0,[r7,#0x10]         ;id  = RdNFDat()<<8;

         mov      r0,r0,lsl #8

         ldrb     r1,[r7,#0x10]         ;id |= RdNFDat();

         orr      r5,r1,r0

         ldr      r0,[r7,#4]               ;NFChipDs();

         orr      r0,r0,#2

         str      r0,[r7,#4]

         mov            pc,lr           //調用傳回

ReadNandStatus

         mov            r7,#NFCONF

         ldr      r0,[r7,#4]               ;NFChipEn();

         bic      r0,r0,#2

         str      r0,[r7,#4]

         mov      r0,#0x70              ;WrNFCmd(QUERYCMD);

         strb     r0,[r7,#8]     

         ldrb     r1,[r7,#0x10]         ;r1 = RdNFDat();

         ldr      r0,[r7,#4]               ;NFChipDs();

         orr      r0,r0,#2

         str      r0,[r7,#4]

         mov            pc,lr

WaitNandBusy

         mov      r0,#0x70              ;WrNFCmd(QUERYCMD);

         mov      r1,#NFCONF

         strb     r0,[r1,#8]

1                                                               ;while(!(RdNFDat()&0x40));        

         ldrb     r0,[r1,#0x10]

         tst      r0,#0x40

         beq             %B1

         mov      r0,#0                   ;WrNFCmd(READCMD0);

         strb     r0,[r1,#8]

         mov      pc,lr

CheckBadBlk

         mov            r7, lr

         mov            r5, #NFCONF

         bic      r0,r0,#0x1f   ;addr &= ~0x1f;

         ldr      r1,[r5,#4]               ;NFChipEn()

         bic      r1,r1,#2

         str      r1,[r5,#4]

         mov      r1,#0x50              ;WrNFCmd(READCMD2)

         strb     r1,[r5,#8]

         mov      r1, #5;6               ;6->5

         strb     r1,[r5,#0xc]  ;WrNFAddr(5);(6) 6->5

         strb     r0,[r5,#0xc]  ;WrNFAddr(addr)

         mov      r1,r0,lsr #8 ;WrNFAddr(addr>>8)

         strb     r1,[r5,#0xc]

         cmp      r6,#0                   ;if(NandAddr)             

         movne    r0,r0,lsr #16        ;WrNFAddr(addr>>16)

         strneb   r0,[r5,#0xc]

;        bl                WaitNandBusy   ;WaitNFBusy()

         ;do not use WaitNandBusy, after WaitNandBusy will read part A!

         mov  r0, #100

1

         subs  r0, r0, #1

         bne    %B1

2

         ldr     r0, [r5, #0x20]

         tst     r0, #1

         beq    %B2

         ldrb   r0, [r5,#0x10]      ;RdNFDat()

         sub             r0, r0, #0xff

         mov      r1,#0                   ;WrNFCmd(READCMD0)

         strb     r1,[r5,#8]

         ldr      r1,[r5,#4]               ;NFChipDs()

         orr      r1,r1,#2

         str      r1,[r5,#4]

         mov            pc, r7

ReadNandPage

         mov            r7,lr

         mov      r4,r1

         mov      r5,#NFCONF

         ldr      r1,[r5,#4]               ;NFChipEn()

         bic      r1,r1,#2

         str      r1,[r5,#4]     

         mov      r1,#0                   ;WrNFCmd(READCMD0)

         strb     r1,[r5,#8]     

         strb     r1,[r5,#0xc]  ;WrNFAddr(0)

         strb     r0,[r5,#0xc]  ;WrNFAddr(addr)

         mov      r1,r0,lsr #8 ;WrNFAddr(addr>>8)

         strb     r1,[r5,#0xc] 

         cmp      r6,#0                   ;if(NandAddr)             

         movne    r0,r0,lsr #16        ;WrNFAddr(addr>>16)

         strneb   r0,[r5,#0xc]

         ldr      r0,[r5,#4]               ;InitEcc()

         orr      r0,r0,#0x10

         str      r0,[r5,#4]

         bl       WaitNandBusy     ;WaitNFBusy()

         mov      r0,#0                   ;for(i=0; i<512; i++)

1

         ldrb     r1,[r5,#0x10]         ;buf[i] = RdNFDat()

         strb     r1,[r4,r0]

         add      r0,r0,#1

         bic      r0,r0,#0x10000

         cmp      r0,#0x200

         bcc      %B1

         ldr      r0,[r5,#4]               ;NFChipDs()

         orr      r0,r0,#2

         str      r0,[r5,#4]

         mov            pc,r7

         ]

;===========================================================

         LTORG

;GCS0->SST39VF1601

;GCS1->16c550

;GCS2->IDE

;GCS3->CS8900

;GCS4->DM9000

;GCS5->CF Card

;GCS6->SDRAM

;GCS7->unused

SMRDATA DATA

; Memory configuration should be optimized for best performance

; The following parameter is not optimized.

; Memory access cycle parameter strategy

; 1) The memory settings is  safe parameters even at HCLK=75Mhz.

; 2) SDRAM refresh period is for HCLK<=75Mhz.

         DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+

(B6_BWSCON<<24)+(B7_BWSCON<<28))

         DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+

(B0_PMC))   ;GCS0

         DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+

(B1_PMC))   ;GCS1

         DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+

(B2_PMC))   ;GCS2

         DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+

(B3_PMC))   ;GCS3

         DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+

(B4_PMC))   ;GCS4

         DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+

(B5_PMC))   ;GCS5

         DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN))    ;GCS6

         DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN))    ;GCS7

         DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Tsrc<<18)+(Tchr<<16)+REFCNT)

         DCD 0x32     ;SCLK power saving mode, BANKSIZE 128M/128M

         DCD 0x30     ;MRSR6 CL=3clk

         DCD 0x30     ;MRSR7 CL=3clk

BaseOfROM      DCD |Image$$RO$$Base|

TopOfROM       DCD |Image$$RO$$Limit|

BaseOfBSS         DCD |Image$$RW$$Base|

BaseOfZero        DCD |Image$$ZI$$Base|

EndOfBSS DCD |Image$$ZI$$Limit|

         ALIGN

;Function for entering power down mode

; 1. SDRAM should be in self-refresh mode.

; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.

; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.

; 4. The I-cache may have to be turned on.

; 5. The location of the following code may have not to be changed.

;void EnterPWDN(int CLKCON);

EnterPWDN

         mov r2,r0            ;r2=rCLKCON

         tst r0,#0x8           ;SLEEP mode?

         bne ENTER_SLEEP

ENTER_STOP

         ldr r0,=REFRESH

         ldr r3,[r0]            ;r3=rREFRESH

         mov r1, r3

         orr r1, r1, #BIT_SELFREFRESH

         str r1, [r0]           ;Enable SDRAM self-refresh

         mov r1,#16                            ;wait until self-refresh is issued. may not be needed.

0       subs r1,r1,#1

         bne %B0

         ldr r0,=CLKCON                  ;enter STOP mode.

         str r2,[r0]

         mov r1,#32

0       subs r1,r1,#1       ;1) wait until the STOP mode is in effect.

         bne %B0             ;2) Or wait here until the CPU&Peripherals will be turned-off

                            ;   Entering SLEEP mode, only the reset by wake-up is available.

         ldr r0,=REFRESH ;exit from SDRAM self refresh mode.

         str r3,[r0]

         MOV_PC_LR

ENTER_SLEEP

         ;NOTE.

         ;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.

         ldr r0,=REFRESH

         ldr r1,[r0]            ;r1=rREFRESH

         orr r1, r1, #BIT_SELFREFRESH

         str r1, [r0]           ;Enable SDRAM self-refresh

         mov r1,#16                            ;Wait until self-refresh is issued,which may not be

needed.

0       subs r1,r1,#1

         bne %B0

         ldr     r1,=MISCCR

         ldr     r0,[r1]

         orr     r0,r0,#(7<<17)  ;Set SCLK0=0, SCLK1=0, SCKE=0.

         str     r0,[r1]

         ldr r0,=CLKCON                  ; Enter sleep mode

         str r2,[r0]

         b .                        ;CPU will die here.

WAKEUP_SLEEP

         ;Release SCLKn after wake-up from the SLEEP mode.

         ldr     r1,=MISCCR

         ldr     r0,[r1]

         bic     r0,r0,#(7<<17)  ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.

         str     r0,[r1]

         ;Set memory control registers

        ldr     r0,=SMRDATA  ;be careful!

         ldr     r1,=BWSCON    ;BWSCON Address

         add    r2, r0, #52  ;End address of SMRDATA

         ldr     r3, [r0], #4

         str     r3, [r1], #4

         cmp  r2, r0

         bne    %B0

         mov r1,#256

0       subs r1,r1,#1       ;1) wait until the SelfRefresh is released.

         bne %B0

         ldr r1,=GSTATUS3     ;GSTATUS3 has the start address just after SLEEP wake-up

         ldr r0,[r1]

         mov pc,r0

;=====================================================================

; Clock division test

; Assemble code, because VSYNC time is very short

;=====================================================================

         EXPORT CLKDIV124

         EXPORT CLKDIV144

CLKDIV124

         ldr     r0, = CLKDIVN

         ldr     r1, = 0x3                  ; 0x3 = 1:2:4

         str     r1, [r0]

;        wait until clock is stable

         nop

         nop

         nop

         nop

         nop

         ldr     r0, = REFRESH

         ldr     r1, [r0]

         bic              r1, r1, #0xff

         bic              r1, r1, #(0x7<<8)

         orr              r1, r1, #0x470      ; REFCNT135

         str     r1, [r0]

         nop

         nop

         nop

         nop

         nop

         mov     pc, lr

CLKDIV144

         ldr     r0, = CLKDIVN

         ldr     r1, = 0x4                  ; 0x4 = 1:4:4

         str     r1, [r0]

;        wait until clock is stable

         nop

         nop

         nop

         nop

         nop

         ldr     r0, = REFRESH

         ldr     r1, [r0]

         bic              r1, r1, #0xff

         bic              r1, r1, #(0x7<<8)

         orr              r1, r1, #0x630      ; REFCNT675 - 1520

         str     r1, [r0]

         nop

         nop

         nop

         nop

         nop

         mov     pc, lr

         ALIGN

         AREA RamData, DATA, READWRITE

         ^   _ISR_STARTADDRESS                 ; _ISR_STARTADDRESS=0x33FF_FF00

HandleReset       #   4

HandleUndef      #   4

HandleSWI                   #   4

HandlePabort    #   4

HandleDabort    #   4

HandleReserved  #   4

HandleIRQ                   #   4

HandleFIQ          #   4

;Do not use the label 'IntVectorTable',

;The value of IntVectorTable is different with the address you think it may be.

;IntVectorTable

;@0x33FF_FF20

HandleEINT0               #   4

HandleEINT1               #   4

HandleEINT2               #   4

HandleEINT3               #   4

HandleEINT4_7 #   4

HandleEINT8_23         #   4

HandleCAM                #   4                  ; Added for 2440.

HandleBATFLT  #   4

HandleTICK                #   4

HandleWDT                 #   4

HandleTIMER0          #   4

HandleTIMER1          #   4

HandleTIMER2          #   4

HandleTIMER3          #   4

HandleTIMER4          #   4

HandleUART2           #   4

;@0x33FF_FF60

HandleLCD                 #   4

HandleDMA0              #   4

HandleDMA1              #   4

HandleDMA2              #   4

HandleDMA3              #   4

HandleMMC               #   4

HandleSPI0                  #   4

HandleUART1             #   4

HandleNFCON            #   4                  ; Added for 2440.

HandleUSBD               #   4

HandleUSBH               #   4

HandleIIC           #   4

HandleUART0   #   4

HandleSPI1                 #   4

HandleRTC                 #   4

HandleADC                #   4

;@0x33FF_FFA0

         END

繼續閱讀