- 實作hpp和cpp
net在拿到layer之後會調用每層layer的Setup函數,每層Setup中會調用:
void SetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
CheckBlobCounts(bottom, top);
LayerSetUp(bottom, top);
Reshape(bottom, top);
SetLossWeights(top);
}
其中cpp中要重載四個函數
- LayerSetup
- Reshape
- Forward
- Backward
upsample.h
#ifndef CAFFE_UPSAMPLE_LAYER_HPP_
#define CAFFE_UPSAMPLE_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
template <typename Dtype>
class UpsampleLayer : public Layer<Dtype> {
public:
explicit UpsampleLayer(const LayerParameter& param)
: Layer<Dtype>(param) {} //構造
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "Upsample"; } //名字
virtual inline int MinBottomBlobs() const { return 1; } //blobs數量限制
virtual inline int MaxBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
//實際要重載這四個函數,但是父類的gpu預設調用cpu傳回,如果不寫cuda則隻需要重載cpu即可
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
private:
int scale_;
};
} // namespace caffe
#endif // CAFFE_UPSAMPLE_LAYER_HPP_
upsample.cpp
#include <vector>
#include "caffe/layers/upsample_layer.hpp"
namespace caffe {
template <typename Dtype>
void UpsampleLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
UpsampleParameter upsample_param = this->layer_param_.upsample_param(); //UpsampleParameter 類會由caffe.proto注冊後自動生成
scale_ = upsample_param.scale();
}
template <typename Dtype>
void UpsampleLayer<Dtype>::Reshape( //reshape的作用是一緻bottom為top開空間,在net定義的時候調用
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
vector<int> out_shape;
for (int i = 0; i < bottom[0]->num_axes(); i++) {
out_shape.push_back(bottom[0]->shape(i));
}
out_shape[bottom[0]->num_axes() - 1] *= scale_;
out_shape[bottom[0]->num_axes() - 2] *= scale_;
top[0]->Reshape(out_shape);
}
template <typename Dtype>
void UpsampleLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
int N = top[0]->shape(0);
int C = top[0]->shape(1);
int H = top[0]->shape(2);
int W = top[0]->shape(3);
const Dtype *input = bottom[0]->cpu_data();
Dtype *output = top[0]->mutable_cpu_data();
for (int n = 0; n < N; n++) {
for (int c = 0; c < C; c++) {
for (int h = 0; h < H; h++) {
for (int w = 0; w < W; w++) {
int nw = w/scale_;
int nh = h/scale_;
int out_idx = (((n * C + c) * H) + h) * W + w;
int in_idx = (((n * C + c) * (H / scale_)) + nh) * (W / scale_) + nw;
output[out_idx] = input[in_idx];
}
}
}
}
}
template <typename Dtype>
void UpsampleLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
int N = bottom[0]->shape(0);
int C = bottom[0]->shape(1);
int H = bottom[0]->shape(2);
int W = bottom[0]->shape(3);
const Dtype *output_grad = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
caffe_set(bottom[0]->count(), Dtype(0), bottom_diff);
for (int n = 0; n < N; n++) {
for (int c = 0; c < C; c++) {
for (int h = 0; h < H; h++) {
for (int w = 0; w < W; w++) {
for (int i = 0; i < scale_; i++) {
for (int j = 0; j < scale_; j++) {
int nw = w * scale_ + i;
int nh = h * scale_ + j;
int out_idx = (((n * C + c) * H) + h) * W + w;
int in_idx = (((n * C + c) * (H * scale_))
+ nh) * (W * scale_) + nw;
bottom_diff[out_idx] += output_grad[in_idx];
}
}
}
}
}
}
}
#ifdef CPU_ONLY
STUB_GPU(UpsampleLayer);
#endif
INSTANTIATE_CLASS(UpsampleLayer); //執行個體化float和double的layer
REGISTER_LAYER_CLASS(Upsample); //在layer_factory裡生成層的float和double creator
} // namespace caffe
- 修改caffe.prorotxt
- 給予編号,optional xxxParameter xxx_param = 152
- 添加message xxxParameter{}
message AllPassParameter {
optional float key = 1 [default = 0];
}
重編 即可