#include <vtkFixedPointVolumeRayCastMapper.h>
#include <vtkBoxWidget.h>
#include <vtkCamera.h>
#include <vtkCommand.h>
#include <vtkColorTransferFunction.h>
#include <vtkDICOMImageReader.h>
#include <vtkImageData.h>
#include <vtkImageResample.h>
#include <vtkMetaImageReader.h>
#include <vtkPiecewiseFunction.h>
#include <vtkPlanes.h>
#include <vtkProperty.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkVolume.h>
#include <vtkVolumeProperty.h>
#include <vtkXMLImageDataReader.h>
#include <vtkNamedColors.h>
#define VTI_FILETYPE 1
#define MHA_FILETYPE 2
namespace
{
void PrintUsage()
{
cout << "Usage: " << endl;
cout << endl;
cout << " FixedPointVolumeRayCastMapperCT <options>" << endl;
cout << endl;
cout << "where options may include: " << endl;
cout << endl;
cout << " -DICOM <directory>" << endl;
cout << " -VTI <filename>" << endl;
cout << " -MHA <filename>" << endl;
cout << " -DependentComponents" << endl;
cout << " -Clip" << endl;
cout << " -MIP <window> <level>" << endl;
cout << " -CompositeRamp <window> <level>" << endl;
cout << " -CompositeShadeRamp <window> <level>" << endl;
cout << " -CT_Skin" << endl;
cout << " -CT_Bone" << endl;
cout << " -CT_Muscle" << endl;
cout << " -FrameRate <rate>" << endl;
cout << " -DataReduction <factor>" << endl;
cout << endl;
cout << "You must use either the -DICOM option to specify the directory where" << endl;
cout << "the data is located or the -VTI or -MHA option to specify the path of a .vti file." << endl;
cout << endl;
cout << "By default, the program assumes that the file has independent components," << endl;
cout << "use -DependentComponents to specify that the file has dependent components." << endl;
cout << endl;
cout << "Use the -Clip option to display a cube widget for clipping the volume." << endl;
cout << "Use the -FrameRate option with a desired frame rate (in frames per second)" << endl;
cout << "which will control the interactive rendering rate." << endl;
cout << "Use the -DataReduction option with a reduction factor (greater than zero and" << endl;
cout << "less than one) to reduce the data before rendering." << endl;
cout << "Use one of the remaining options to specify the blend function" << endl;
cout << "and transfer functions. The -MIP option utilizes a maximum intensity" << endl;
cout << "projection method, while the others utilize compositing. The" << endl;
cout << "-CompositeRamp option is unshaded compositing, while the other" << endl;
cout << "compositing options employ shading." << endl;
cout << endl;
cout << "Note: MIP, CompositeRamp, CompositeShadeRamp, CT_Skin, CT_Bone," << endl;
cout << "and CT_Muscle are appropriate for DICOM data. MIP, CompositeRamp," << endl;
cout << "and RGB_Composite are appropriate for RGB data." << endl;
cout << endl;
cout << "Example: FixedPointVolumeRayCastMapperCT -DICOM CTNeck -MIP 4096 1024" << endl;
cout << endl;
}
}
int main(int argc, char* argv[])
{
// Parse the parameters
int count = 1;
char* dirname = NULL;
double opacityWindow = 4096;
double opacityLevel = 2048;
int blendType = 6;
int clip = 0;
double reductionFactor = 1.0;
double frameRate = 10.0;
//char* dirname = "E:\\工作\\DICOM";
int fileType = 0;
bool independentComponents = true;
// Create the renderer, render window and interactor
vtkSmartPointer<vtkNamedColors> colors =
vtkSmartPointer<vtkNamedColors>::New();
vtkSmartPointer<vtkRenderer> renderer =
vtkSmartPointer<vtkRenderer>::New();
vtkSmartPointer<vtkRenderWindow> renWin =
vtkSmartPointer<vtkRenderWindow>::New();
renWin->AddRenderer(renderer);
// Connect it all. Note that funny arithematic on the
// SetDesiredUpdateRate - the vtkRenderWindow divides it
// allocated time across all renderers, and the renderer
// divides it time across all props. If clip is
// true then there are two props
vtkSmartPointer<vtkRenderWindowInteractor> iren =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
iren->SetRenderWindow(renWin);
iren->SetDesiredUpdateRate(frameRate / (1 + clip));
iren->GetInteractorStyle()->SetDefaultRenderer(renderer);
// Read the data
vtkSmartPointer<vtkAlgorithm> reader =
vtkSmartPointer<vtkAlgorithm>::New();
vtkSmartPointer<vtkImageData> input =
vtkSmartPointer<vtkImageData>::New();
/*if (dirname)
{*/
vtkSmartPointer<vtkDICOMImageReader> dicomReader =
vtkSmartPointer<vtkDICOMImageReader>::New();
dicomReader->SetDirectoryName("E:\\工作\\DICOM");
dicomReader->Update();
input = dicomReader->GetOutput();
reader = dicomReader;
/* }*/
/* else if (fileType == VTI_FILETYPE)
{
vtkSmartPointer<vtkXMLImageDataReader> xmlReader =
vtkSmartPointer<vtkXMLImageDataReader>::New();
xmlReader->SetFileName(fileName);
xmlReader->Update();
input = xmlReader->GetOutput();
reader = xmlReader;
}
else if (fileType == MHA_FILETYPE)
{
vtkSmartPointer<vtkMetaImageReader> metaReader =
vtkSmartPointer<vtkMetaImageReader>::New();
metaReader->SetFileName(fileName);
metaReader->Update();
input = metaReader->GetOutput();
reader = metaReader;
}
else
{
cout << "Error! Not VTI or MHA!" << endl;
exit(EXIT_FAILURE);
}*/
// Verify that we actually have a volume
int dim[3];
input->GetDimensions(dim);
if (dim[0] < 2 ||
dim[1] < 2 ||
dim[2] < 2)
{
cout << "Error loading data!" << endl;
exit(EXIT_FAILURE);
}
vtkSmartPointer<vtkImageResample> resample =
vtkSmartPointer<vtkImageResample>::New();
if (reductionFactor < 1.0)
{
resample->SetInputConnection(reader->GetOutputPort());
resample->SetAxisMagnificationFactor(0, reductionFactor);
resample->SetAxisMagnificationFactor(1, reductionFactor);
resample->SetAxisMagnificationFactor(2, reductionFactor);
}
// Create our volume and mapper
vtkSmartPointer<vtkVolume> volume =
vtkSmartPointer<vtkVolume>::New();
vtkSmartPointer<vtkFixedPointVolumeRayCastMapper> mapper =
vtkSmartPointer<vtkFixedPointVolumeRayCastMapper>::New();
if (reductionFactor < 1.0)
{
mapper->SetInputConnection(resample->GetOutputPort());
}
else
{
mapper->SetInputConnection(reader->GetOutputPort());
}
// Set the sample distance on the ray to be 1/2 the average spacing
double spacing[3];
if (reductionFactor < 1.0)
{
resample->GetOutput()->GetSpacing(spacing);
}
else
{
input->GetSpacing(spacing);
}
// mapper->SetSampleDistance( (spacing[0]+spacing[1]+spacing[2])/6.0 );
// mapper->SetMaximumImageSampleDistance(10.0);
// Create our transfer function
vtkSmartPointer<vtkColorTransferFunction> colorFun =
vtkSmartPointer<vtkColorTransferFunction>::New();
vtkSmartPointer<vtkPiecewiseFunction> opacityFun =
vtkSmartPointer<vtkPiecewiseFunction>::New();
// Create the property and attach the transfer functions
vtkSmartPointer<vtkVolumeProperty> property =
vtkSmartPointer<vtkVolumeProperty>::New();
property->SetIndependentComponents(independentComponents);
property->SetColor(colorFun);
property->SetScalarOpacity(opacityFun);
property->SetInterpolationTypeToLinear();
// connect up the volume to the property and the mapper
volume->SetProperty(property);
volume->SetMapper(mapper);
// Depending on the blend type selected as a command line option,
// adjust the transfer function
switch (blendType)
{
// MIP
// Create an opacity ramp from the window and level values.
// Color is white. Blending is MIP.
case 0:
colorFun->AddRGBSegment(0.0, 1.0, 1.0, 1.0, 255.0, 1.0, 1.0, 1.0);
opacityFun->AddSegment(opacityLevel - 0.5 * opacityWindow, 0.0,
opacityLevel + 0.5 * opacityWindow, 1.0);
mapper->SetBlendModeToMaximumIntensity();
break;
// CompositeRamp
// Create a ramp from the window and level values. Use compositing
// without shading. Color is a ramp from black to white.
case 1:
colorFun->AddRGBSegment(opacityLevel - 0.5 * opacityWindow, 0.0, 0.0, 0.0,
opacityLevel + 0.5 * opacityWindow, 1.0, 1.0, 1.0);
opacityFun->AddSegment(opacityLevel - 0.5 * opacityWindow, 0.0,
opacityLevel + 0.5 * opacityWindow, 1.0);
mapper->SetBlendModeToComposite();
property->ShadeOff();
break;
// CompositeShadeRamp
// Create a ramp from the window and level values. Use compositing
// with shading. Color is white.
case 2:
colorFun->AddRGBSegment(0.0, 1.0, 1.0, 1.0, 255.0, 1.0, 1.0, 1.0);
opacityFun->AddSegment(opacityLevel - 0.5 * opacityWindow, 0.0,
opacityLevel + 0.5 * opacityWindow, 1.0);
mapper->SetBlendModeToComposite();
property->ShadeOn();
break;
// CT_Skin
// Use compositing and functions set to highlight skin in CT data
// Not for use on RGB data
case 3:
colorFun->AddRGBPoint(-3024, 0, 0, 0, 0.5, 0.0);
colorFun->AddRGBPoint(-1000, .62, .36, .18, 0.5, 0.0);
colorFun->AddRGBPoint(-500, .88, .60, .29, 0.33, 0.45);
colorFun->AddRGBPoint(3071, .83, .66, 1, 0.5, 0.0);
opacityFun->AddPoint(-3024, 0, 0.5, 0.0);
opacityFun->AddPoint(-1000, 0, 0.5, 0.0);
opacityFun->AddPoint(-500, 1.0, 0.33, 0.45);
opacityFun->AddPoint(3071, 1.0, 0.5, 0.0);
mapper->SetBlendModeToComposite();
property->ShadeOn();
property->SetAmbient(0.1);
property->SetDiffuse(0.9);
property->SetSpecular(0.2);
property->SetSpecularPower(10.0);
property->SetScalarOpacityUnitDistance(0.8919);
break;
// CT_Bone
// Use compositing and functions set to highlight bone in CT data
// Not for use on RGB data
case 4:
colorFun->AddRGBPoint(-3024, 0, 0, 0, 0.5, 0.0);
colorFun->AddRGBPoint(-16, 0.73, 0.25, 0.30, 0.49, .61);
colorFun->AddRGBPoint(641, .90, .82, .56, .5, 0.0);
colorFun->AddRGBPoint(3071, 1, 1, 1, .5, 0.0);
opacityFun->AddPoint(-3024, 0, 0.5, 0.0);
opacityFun->AddPoint(-16, 0, .49, .61);
opacityFun->AddPoint(641, .72, .5, 0.0);
opacityFun->AddPoint(3071, .71, 0.5, 0.0);
mapper->SetBlendModeToComposite();
property->ShadeOn();
property->SetAmbient(0.1);
property->SetDiffuse(0.9);
property->SetSpecular(0.2);
property->SetSpecularPower(10.0);
property->SetScalarOpacityUnitDistance(0.8919);
break;
// CT_Muscle
// Use compositing and functions set to highlight muscle in CT data
// Not for use on RGB data
case 5:
colorFun->AddRGBPoint(-3024, 0, 0, 0, 0.5, 0.0);
colorFun->AddRGBPoint(-155, .55, .25, .15, 0.5, .92);
colorFun->AddRGBPoint(217, .88, .60, .29, 0.33, 0.45);
colorFun->AddRGBPoint(420, 1, .94, .95, 0.5, 0.0);
colorFun->AddRGBPoint(3071, .83, .66, 1, 0.5, 0.0);
opacityFun->AddPoint(-3024, 0, 0.5, 0.0);
opacityFun->AddPoint(-155, 0, 0.5, 0.92);
opacityFun->AddPoint(217, .68, 0.33, 0.45);
opacityFun->AddPoint(420, .83, 0.5, 0.0);
opacityFun->AddPoint(3071, .80, 0.5, 0.0);
mapper->SetBlendModeToComposite();
property->ShadeOn();
property->SetAmbient(0.1);
property->SetDiffuse(0.9);
property->SetSpecular(0.2);
property->SetSpecularPower(10.0);
property->SetScalarOpacityUnitDistance(0.8919);
break;
// RGB_Composite
// Use compositing and functions set to highlight red/green/blue regions
// in RGB data. Not for use on single component data
case 6:
opacityFun->AddPoint(0, 0.0);
opacityFun->AddPoint(5.0, 0.0);
opacityFun->AddPoint(30.0, 0.05);
opacityFun->AddPoint(31.0, 0.0);
opacityFun->AddPoint(90.0, 0.0);
opacityFun->AddPoint(100.0, 0.3);
opacityFun->AddPoint(110.0, 0.0);
opacityFun->AddPoint(190.0, 0.0);
opacityFun->AddPoint(200.0, 0.4);
opacityFun->AddPoint(210.0, 0.0);
opacityFun->AddPoint(245.0, 0.0);
opacityFun->AddPoint(255.0, 0.5);
mapper->SetBlendModeToComposite();
property->ShadeOff();
property->SetScalarOpacityUnitDistance(1.0);
break;
default:
vtkGenericWarningMacro("Unknown blend type.");
break;
}
// Set the default window size
renWin->SetSize(600, 600);
renWin->Render();
// Add the volume to the scene
renderer->AddVolume(volume);
renderer->ResetCamera();
renderer->SetBackground(colors->GetColor3d("SlateGray").GetData());
// interact with data
renWin->Render();
iren->Start();
return EXIT_SUCCESS;;
}
VTK FixedPointVolumeRayCastMapperCT 體渲染
VTK FixedPointVolumeRayCastMapperCT 體渲染
VTK FixedPointVolumeRayCastMapperCT 體渲染