天天看點

Spring Framework IoC依賴處理過程解析

作者:NiceEleven

本篇我們一起來看一下Spring Framework IoC依賴處理過程解析。這裡我總結了幾個關鍵點:

* 入口 - DefaultListableBeanFactory#resolveDependency
* 依賴描述符 - DependencyDescriptor
* 自綁定候選對象處理器 - AutowireCandidateResolver           

接下來我們就通過Debug的方式進行源碼閱讀,一起來了解一下。代碼如下:

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.eleven.thinking.in.spring.ioc.dependency.injection;

import org.eleven.thinking.in.spring.ioc.dependency.injection.annotation.InjectedUser;
import org.eleven.thinking.in.spring.ioc.dependency.injection.annotation.MyAutowired;
import org.eleven.thinking.in.spring.ioc.overview.domain.User;
import org.springframework.beans.factory.ObjectFactory;
import org.springframework.beans.factory.ObjectProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.beans.factory.xml.XmlBeanDefinitionReader;
import org.springframework.context.annotation.*;
import org.springframework.core.Ordered;
import org.springframework.core.annotation.Order;

import javax.inject.Inject;
import java.lang.annotation.Annotation;
import java.util.*;

import static java.util.Arrays.asList;
import static org.springframework.context.annotation.AnnotationConfigUtils.AUTOWIRED_ANNOTATION_PROCESSOR_BEAN_NAME;

/**
 * 注解驅動的依賴注入處理過程
 *
 * @author <a href="mailto:[email protected]">eleven</a>
 * @see Qualifier
 * @since
 */
@Configuration
public class AnnotationDependencyInjectionResolutionDemo {

    @Autowired          // 依賴查找(處理) + 延遲
    @Lazy
    private User lazyUser;

    // DependencyDescriptor ->
    // 必須(required=true)
    // 實時注入(eager=true)
    // 通過類型(User.class)
    // 字段名稱("user")
    // 是否首要(primary = true)
    @Autowired          // 依賴查找(處理)
    private User user;

    @Autowired          // 集合類型依賴注入
    private Map<String, User> users; // user superUser
    
    public static void main(String[] args) {

        // 建立 BeanFactory 容器
        AnnotationConfigApplicationContext applicationContext = new AnnotationConfigApplicationContext();
        // 注冊 Configuration Class(配置類) -> Spring Bean
        applicationContext.register(AnnotationDependencyInjectionResolutionDemo.class);

        XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReader(applicationContext);

        String xmlResourcePath = "classpath:/META-INF/dependency-lookup-context.xml";
        // 加載 XML 資源,解析并且生成 BeanDefinition
        beanDefinitionReader.loadBeanDefinitions(xmlResourcePath);

        // 啟動 Spring 應用上下文
        applicationContext.refresh();

        // 依賴查找 QualifierAnnotationDependencyInjectionDemo Bean
        AnnotationDependencyInjectionResolutionDemo demo = applicationContext.getBean(AnnotationDependencyInjectionResolutionDemo.class);

        // 期待輸出 superUser Bean
        System.out.println("demo.user = " + demo.user);
        // 期待輸出 user superUser
        System.out.println("demo.users = " + demo.users);
        // 期待輸出 superUser Bean
        System.out.println("demo.userOptional = " + demo.userOptional);

        // 顯示地關閉 Spring 應用上下文
        applicationContext.close();
    }
}           

以上我們分别掩飾了單一類型、集合類型以及延遲加載的依賴處理過程,大家可以自己實踐一下。另外這裡我們再來看一下DependencyDescriptor這個類的源碼:

/*
 * Copyright 2002-2019 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.springframework.beans.factory.config;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.Serializable;
import java.lang.annotation.Annotation;
import java.lang.reflect.Field;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.Map;
import java.util.Optional;

import kotlin.reflect.KProperty;
import kotlin.reflect.jvm.ReflectJvmMapping;

import org.springframework.beans.BeansException;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.InjectionPoint;
import org.springframework.beans.factory.NoUniqueBeanDefinitionException;
import org.springframework.core.GenericTypeResolver;
import org.springframework.core.KotlinDetector;
import org.springframework.core.MethodParameter;
import org.springframework.core.ParameterNameDiscoverer;
import org.springframework.core.ResolvableType;
import org.springframework.core.convert.TypeDescriptor;
import org.springframework.lang.Nullable;
import org.springframework.util.ObjectUtils;

/**
 * Descriptor for a specific dependency that is about to be injected.
 * Wraps a constructor parameter, a method parameter or a field,
 * allowing unified access to their metadata.
 *
 * @author Juergen Hoeller
 * @since 2.5
 */
@SuppressWarnings("serial")
public class DependencyDescriptor extends InjectionPoint implements Serializable {

	private final Class<?> declaringClass;

	@Nullable
	private String methodName;

	@Nullable
	private Class<?>[] parameterTypes;

	private int parameterIndex;

	@Nullable
	private String fieldName;

	private final boolean required;

	private final boolean eager;

	private int nestingLevel = 1;

	@Nullable
	private Class<?> containingClass;

	@Nullable
	private transient volatile ResolvableType resolvableType;

	@Nullable
	private transient volatile TypeDescriptor typeDescriptor;


	/**
	 * Create a new descriptor for a method or constructor parameter.
	 * Considers the dependency as 'eager'.
	 * @param methodParameter the MethodParameter to wrap
	 * @param required whether the dependency is required
	 */
	public DependencyDescriptor(MethodParameter methodParameter, boolean required) {
		this(methodParameter, required, true);
	}

	/**
	 * Create a new descriptor for a method or constructor parameter.
	 * @param methodParameter the MethodParameter to wrap
	 * @param required whether the dependency is required
	 * @param eager whether this dependency is 'eager' in the sense of
	 * eagerly resolving potential target beans for type matching
	 */
	public DependencyDescriptor(MethodParameter methodParameter, boolean required, boolean eager) {
		super(methodParameter);

		this.declaringClass = methodParameter.getDeclaringClass();
		if (methodParameter.getMethod() != null) {
			this.methodName = methodParameter.getMethod().getName();
		}
		this.parameterTypes = methodParameter.getExecutable().getParameterTypes();
		this.parameterIndex = methodParameter.getParameterIndex();
		this.containingClass = methodParameter.getContainingClass();
		this.required = required;
		this.eager = eager;
	}

	/**
	 * Create a new descriptor for a field.
	 * Considers the dependency as 'eager'.
	 * @param field the field to wrap
	 * @param required whether the dependency is required
	 */
	public DependencyDescriptor(Field field, boolean required) {
		this(field, required, true);
	}

	/**
	 * Create a new descriptor for a field.
	 * @param field the field to wrap
	 * @param required whether the dependency is required
	 * @param eager whether this dependency is 'eager' in the sense of
	 * eagerly resolving potential target beans for type matching
	 */
	public DependencyDescriptor(Field field, boolean required, boolean eager) {
		super(field);

		this.declaringClass = field.getDeclaringClass();
		this.fieldName = field.getName();
		this.required = required;
		this.eager = eager;
	}

	/**
	 * Copy constructor.
	 * @param original the original descriptor to create a copy from
	 */
	public DependencyDescriptor(DependencyDescriptor original) {
		super(original);

		this.declaringClass = original.declaringClass;
		this.methodName = original.methodName;
		this.parameterTypes = original.parameterTypes;
		this.parameterIndex = original.parameterIndex;
		this.fieldName = original.fieldName;
		this.containingClass = original.containingClass;
		this.required = original.required;
		this.eager = original.eager;
		this.nestingLevel = original.nestingLevel;
	}


	/**
	 * Return whether this dependency is required.
	 * <p>Optional semantics are derived from Java 8's {@link java.util.Optional},
	 * any variant of a parameter-level {@code Nullable} annotation (such as from
	 * JSR-305 or the FindBugs set of annotations), or a language-level nullable
	 * type declaration in Kotlin.
	 */
	public boolean isRequired() {
		if (!this.required) {
			return false;
		}

		if (this.field != null) {
			return !(this.field.getType() == Optional.class || hasNullableAnnotation() ||
					(KotlinDetector.isKotlinReflectPresent() &&
							KotlinDetector.isKotlinType(this.field.getDeclaringClass()) &&
							KotlinDelegate.isNullable(this.field)));
		}
		else {
			return !obtainMethodParameter().isOptional();
		}
	}

	/**
	 * Check whether the underlying field is annotated with any variant of a
	 * {@code Nullable} annotation, e.g. {@code javax.annotation.Nullable} or
	 * {@code edu.umd.cs.findbugs.annotations.Nullable}.
	 */
	private boolean hasNullableAnnotation() {
		for (Annotation ann : getAnnotations()) {
			if ("Nullable".equals(ann.annotationType().getSimpleName())) {
				return true;
			}
		}
		return false;
	}

	/**
	 * Return whether this dependency is 'eager' in the sense of
	 * eagerly resolving potential target beans for type matching.
	 */
	public boolean isEager() {
		return this.eager;
	}

	/**
	 * Resolve the specified not-unique scenario: by default,
	 * throwing a {@link NoUniqueBeanDefinitionException}.
	 * <p>Subclasses may override this to select one of the instances or
	 * to opt out with no result at all through returning {@code null}.
	 * @param type the requested bean type
	 * @param matchingBeans a map of bean names and corresponding bean
	 * instances which have been pre-selected for the given type
	 * (qualifiers etc already applied)
	 * @return a bean instance to proceed with, or {@code null} for none
	 * @throws BeansException in case of the not-unique scenario being fatal
	 * @since 5.1
	 */
	@Nullable
	public Object resolveNotUnique(ResolvableType type, Map<String, Object> matchingBeans) throws BeansException {
		throw new NoUniqueBeanDefinitionException(type, matchingBeans.keySet());
	}

	/**
	 * Resolve the specified not-unique scenario: by default,
	 * throwing a {@link NoUniqueBeanDefinitionException}.
	 * <p>Subclasses may override this to select one of the instances or
	 * to opt out with no result at all through returning {@code null}.
	 * @param type the requested bean type
	 * @param matchingBeans a map of bean names and corresponding bean
	 * instances which have been pre-selected for the given type
	 * (qualifiers etc already applied)
	 * @return a bean instance to proceed with, or {@code null} for none
	 * @throws BeansException in case of the not-unique scenario being fatal
	 * @since 4.3
	 * @deprecated as of 5.1, in favor of {@link #resolveNotUnique(ResolvableType, Map)}
	 */
	@Deprecated
	@Nullable
	public Object resolveNotUnique(Class<?> type, Map<String, Object> matchingBeans) throws BeansException {
		throw new NoUniqueBeanDefinitionException(type, matchingBeans.keySet());
	}

	/**
	 * Resolve a shortcut for this dependency against the given factory, for example
	 * taking some pre-resolved information into account.
	 * <p>The resolution algorithm will first attempt to resolve a shortcut through this
	 * method before going into the regular type matching algorithm across all beans.
	 * Subclasses may override this method to improve resolution performance based on
	 * pre-cached information while still receiving {@link InjectionPoint} exposure etc.
	 * @param beanFactory the associated factory
	 * @return the shortcut result if any, or {@code null} if none
	 * @throws BeansException if the shortcut could not be obtained
	 * @since 4.3.1
	 */
	@Nullable
	public Object resolveShortcut(BeanFactory beanFactory) throws BeansException {
		return null;
	}

	/**
	 * Resolve the specified bean name, as a candidate result of the matching
	 * algorithm for this dependency, to a bean instance from the given factory.
	 * <p>The default implementation calls {@link BeanFactory#getBean(String)}.
	 * Subclasses may provide additional arguments or other customizations.
	 * @param beanName the bean name, as a candidate result for this dependency
	 * @param requiredType the expected type of the bean (as an assertion)
	 * @param beanFactory the associated factory
	 * @return the bean instance (never {@code null})
	 * @throws BeansException if the bean could not be obtained
	 * @since 4.3.2
	 * @see BeanFactory#getBean(String)
	 */
	public Object resolveCandidate(String beanName, Class<?> requiredType, BeanFactory beanFactory)
			throws BeansException {

		return beanFactory.getBean(beanName);
	}


	/**
	 * Increase this descriptor's nesting level.
	 * @see MethodParameter#increaseNestingLevel()
	 */
	public void increaseNestingLevel() {
		this.nestingLevel++;
		this.resolvableType = null;
		if (this.methodParameter != null) {
			this.methodParameter.increaseNestingLevel();
		}
	}

	/**
	 * Optionally set the concrete class that contains this dependency.
	 * This may differ from the class that declares the parameter/field in that
	 * it may be a subclass thereof, potentially substituting type variables.
	 * @since 4.0
	 */
	public void setContainingClass(Class<?> containingClass) {
		this.containingClass = containingClass;
		this.resolvableType = null;
		if (this.methodParameter != null) {
			GenericTypeResolver.resolveParameterType(this.methodParameter, containingClass);
		}
	}

	/**
	 * Build a {@link ResolvableType} object for the wrapped parameter/field.
	 * @since 4.0
	 */
	public ResolvableType getResolvableType() {
		ResolvableType resolvableType = this.resolvableType;
		if (resolvableType == null) {
			resolvableType = (this.field != null ?
					ResolvableType.forField(this.field, this.nestingLevel, this.containingClass) :
					ResolvableType.forMethodParameter(obtainMethodParameter()));
			this.resolvableType = resolvableType;
		}
		return resolvableType;
	}

	/**
	 * Build a {@link TypeDescriptor} object for the wrapped parameter/field.
	 * @since 5.1.4
	 */
	public TypeDescriptor getTypeDescriptor() {
		TypeDescriptor typeDescriptor = this.typeDescriptor;
		if (typeDescriptor == null) {
			typeDescriptor = (this.field != null ?
					new TypeDescriptor(getResolvableType(), getDependencyType(), getAnnotations()) :
					new TypeDescriptor(obtainMethodParameter()));
			this.typeDescriptor = typeDescriptor;
		}
		return typeDescriptor;
	}

	/**
	 * Return whether a fallback match is allowed.
	 * <p>This is {@code false} by default but may be overridden to return {@code true} in order
	 * to suggest to an {@link org.springframework.beans.factory.support.AutowireCandidateResolver}
	 * that a fallback match is acceptable as well.
	 * @since 4.0
	 */
	public boolean fallbackMatchAllowed() {
		return false;
	}

	/**
	 * Return a variant of this descriptor that is intended for a fallback match.
	 * @since 4.0
	 * @see #fallbackMatchAllowed()
	 */
	public DependencyDescriptor forFallbackMatch() {
		return new DependencyDescriptor(this) {
			@Override
			public boolean fallbackMatchAllowed() {
				return true;
			}
		};
	}

	/**
	 * Initialize parameter name discovery for the underlying method parameter, if any.
	 * <p>This method does not actually try to retrieve the parameter name at
	 * this point; it just allows discovery to happen when the application calls
	 * {@link #getDependencyName()} (if ever).
	 */
	public void initParameterNameDiscovery(@Nullable ParameterNameDiscoverer parameterNameDiscoverer) {
		if (this.methodParameter != null) {
			this.methodParameter.initParameterNameDiscovery(parameterNameDiscoverer);
		}
	}

	/**
	 * Determine the name of the wrapped parameter/field.
	 * @return the declared name (never {@code null})
	 */
	@Nullable
	public String getDependencyName() {
		return (this.field != null ? this.field.getName() : obtainMethodParameter().getParameterName());
	}

	/**
	 * Determine the declared (non-generic) type of the wrapped parameter/field.
	 * @return the declared type (never {@code null})
	 */
	public Class<?> getDependencyType() {
		if (this.field != null) {
			if (this.nestingLevel > 1) {
				Type type = this.field.getGenericType();
				for (int i = 2; i <= this.nestingLevel; i++) {
					if (type instanceof ParameterizedType) {
						Type[] args = ((ParameterizedType) type).getActualTypeArguments();
						type = args[args.length - 1];
					}
				}
				if (type instanceof Class) {
					return (Class<?>) type;
				}
				else if (type instanceof ParameterizedType) {
					Type arg = ((ParameterizedType) type).getRawType();
					if (arg instanceof Class) {
						return (Class<?>) arg;
					}
				}
				return Object.class;
			}
			else {
				return this.field.getType();
			}
		}
		else {
			return obtainMethodParameter().getNestedParameterType();
		}
	}


	@Override
	public boolean equals(Object other) {
		if (this == other) {
			return true;
		}
		if (!super.equals(other)) {
			return false;
		}
		DependencyDescriptor otherDesc = (DependencyDescriptor) other;
		return (this.required == otherDesc.required && this.eager == otherDesc.eager &&
				this.nestingLevel == otherDesc.nestingLevel && this.containingClass == otherDesc.containingClass);
	}

	@Override
	public int hashCode() {
		return (31 * super.hashCode() + ObjectUtils.nullSafeHashCode(this.containingClass));
	}


	//---------------------------------------------------------------------
	// Serialization support
	//---------------------------------------------------------------------

	private void readObject(ObjectInputStream ois) throws IOException, ClassNotFoundException {
		// Rely on default serialization; just initialize state after deserialization.
		ois.defaultReadObject();

		// Restore reflective handles (which are unfortunately not serializable)
		try {
			if (this.fieldName != null) {
				this.field = this.declaringClass.getDeclaredField(this.fieldName);
			}
			else {
				if (this.methodName != null) {
					this.methodParameter = new MethodParameter(
							this.declaringClass.getDeclaredMethod(this.methodName, this.parameterTypes), this.parameterIndex);
				}
				else {
					this.methodParameter = new MethodParameter(
							this.declaringClass.getDeclaredConstructor(this.parameterTypes), this.parameterIndex);
				}
				for (int i = 1; i < this.nestingLevel; i++) {
					this.methodParameter.increaseNestingLevel();
				}
			}
		}
		catch (Throwable ex) {
			throw new IllegalStateException("Could not find original class structure", ex);
		}
	}


	/**
	 * Inner class to avoid a hard dependency on Kotlin at runtime.
	 */
	private static class KotlinDelegate {

		/**
		 * Check whether the specified {@link Field} represents a nullable Kotlin type or not.
		 */
		public static boolean isNullable(Field field) {
			KProperty<?> property = ReflectJvmMapping.getKotlinProperty(field);
			return (property != null && property.getReturnType().isMarkedNullable());
		}
	}
}           

這裡我們來重點看一下主要的屬性:

* private String methodName;
* private Class<?>[] parameterTypes;
* private int parameterIndex;
* private String fieldName;
* private final boolean required;
* private final boolean eager;
* private int nestingLevel = 1;
* private Class<?> containingClass;
* private transient volatile ResolvableType resolvableType;
* private transient volatile TypeDescriptor typeDescriptor;           

methodName、parameterTypes、parameterIndex、fieldName這幾個屬性分别描述的是方法注入、構造器注入、字段注入相關的資訊。required表示是否是必須的,eager表示的是否為延遲加載,nestingLevel是依賴的層次資訊。containingClass表示的包涵依賴的類資訊。