一、 ResRet18網絡結構
下面測試代碼使用ResNet18訓練CIFAR10。

- 測試環境 google colab
- TF2.0
二、模型類
1. 指定TF2.0
try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass
2. 模型類
class BasicBlock(layers.Layer):
def __init__(self,filter_num,stride=1):
super(BasicBlock, self).__init__()
self.conv1=layers.Conv2D(filter_num,(3,3),strides=stride,padding='same')
self.bn1=layers.BatchNormalization()
self.relu=layers.Activation('relu')
self.conv2=layers.Conv2D(filter_num,(3,3),strides=1,padding='same')
self.bn2 = layers.BatchNormalization()
if stride!=1:
self.downsample=Sequential()
self.downsample.add(layers.Conv2D(filter_num,(1,1),strides=stride))
else:
self.downsample=lambda x:x
def call(self,input,training=None):
out=self.conv1(input)
out=self.bn1(out)
out=self.relu(out)
out=self.conv2(out)
out=self.bn2(out)
identity=self.downsample(input)
output=layers.add([out,identity])
output=tf.nn.relu(output)
return output
class ResNet(keras.Model):
def __init__(self,layer_dims,num_classes=10):
super(ResNet, self).__init__()
# 預處理層
self.stem=Sequential([
layers.Conv2D(64,(3,3),strides=(1,1)),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPool2D(pool_size=(2,2),strides=(1,1),padding='same')
])
# resblock
self.layer1=self.build_resblock(64,layer_dims[0])
self.layer2 = self.build_resblock(128, layer_dims[1],stride=2)
self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)
# there are [b,512,h,w]
# 自适應
self.avgpool=layers.GlobalAveragePooling2D()
self.fc=layers.Dense(num_classes)
def call(self,input,training=None):
x=self.stem(input)
x=self.layer1(x)
x=self.layer2(x)
x=self.layer3(x)
x=self.layer4(x)
# [b,c]
x=self.avgpool(x)
x=self.fc(x)
return x
def build_resblock(self,filter_num,blocks,stride=1):
res_blocks= Sequential()
# may down sample
res_blocks.add(BasicBlock(filter_num,stride))
# just down sample one time
for pre in range(1,blocks):
res_blocks.add(BasicBlock(filter_num,stride=1))
return res_blocks
def ResNet18():
return ResNet([2,2,2,2])
def ResNet34():
return ResNet(BasicBlock, [3,4,6,3])
def ResNet50():
return ResNet(Bottleneck, [3,4,6,3])
def ResNet101():
return ResNet(Bottleneck, [3,4,23,3])
def ResNet152():
return ResNet(Bottleneck, [3,8,36,3])
三、 使用resnet18模型訓練CIFAR10
import os
import tensorflow as tf
# 我在colab運作注釋掉了這一句,模型儲存成單個檔案時這句應當保留
#from Resnet import ResNet18
from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2'
tf.random.set_seed(2345)
def preprocess(x,y):
x=2*tf.cast(x,dtype=tf.float32)/255.-1
y=tf.cast(y,dtype=tf.int32)
return x,y
(x_train,y_train),(x_test,y_test)=datasets.cifar10.load_data()
y_train=tf.squeeze(y_train,axis=1)
y_test=tf.squeeze(y_test,axis=1)
# print(x_train.shape,y_train.shape,x_test.shape,y_test.shape)
train_data=tf.data.Dataset.from_tensor_slices((x_train,y_train))
train_data=train_data.shuffle(1000).map(preprocess).batch(64)
test_data=tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_data=test_data.map(preprocess).batch(64)
sample=next(iter(train_data))
print('sample:',sample[0].shape,sample[1].shape,
tf.reduce_min(sample[0]),tf.reduce_max(sample[0]))
def main():
model=ResNet18()
model.build(input_shape=(None,32,32,3))
model.summary()
optimizer=optimizers.Adam(lr=1e-3)
for epoch in range(50):
for step,(x,y) in enumerate(train_data):
with tf.GradientTape() as tape:
logits=model(x)
y_onehot=tf.one_hot(y,depth=10)
loss=tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True)
loss=tf.reduce_mean(loss)
grads=tape.gradient(loss,model.trainable_variables)
optimizer.apply_gradients(zip(grads,model.trainable_variables))
if step%100==0:
print(epoch,step,'loss',float(loss))
total_num=0
total_correct=0
for x,y in test_data:
logits=model(x)
prob=tf.nn.softmax(logits,axis=1)
pred=tf.argmax(prob,axis=1)
pred=tf.cast(pred,dtype=tf.int32)
correct=tf.cast(tf.equal(pred,y),dtype=tf.int32)
correct=tf.reduce_sum(correct)
total_num+=x.shape[0]
total_correct+=int(correct)
acc=total_correct/total_num
print(epoch,'acc:',acc)
if __name__ == '__main__':
main()