Android消息機制原了解析
Android消息機制解析
為什麼主線程中可以直接使用Handler?
Handler 的運作需要底層的 MessageQueue 和 Looper 支撐,MessageQueue 是以單連結清單為資料結構的消息清單,Looper 以無限循環的形式去查找 MessageQueue 中是否有新消息需要處理。Looper 中還有一個特殊概念 ThreadLocal,可以在不同的線程中互補幹擾地存儲并提供資料,通過 ThreadLocal 可以輕松擷取每個線程的 Looper。線程預設沒有 Looper,如果需要使用 Handler 就必須為線程建立 Looper。而主線程,也就是 ActivityThread,它在建立時會初始化 Looper,這就是在主線程中預設可以使用 Handler 的原因。
為什麼Android會提供Handler?
Android 規定通路 UI 隻能在主線程中進行,如果子線程中通路 UI,那麼程式就會抛出異常。ViewRootImpl 對 UI 操作做了驗證,該驗證過程是由 checkThread 方法完成的:
void checkThread(){
if(mThread != Thread.currentThrad){
throw new CalledFromWrongThreadException(
"Only the original thread that crated a view hierarchy can touch its views");
}
}
同時 Android 又建議在主線程中不要進行耗時操作,否則導緻程式無法響應即 ANR。而在系統提供 Handler,正是為了解決子線程中無法通路 UI 的沖突。
為什麼不允許子線程中通路UI呢?
這是因為 Android 的 UI 控件時線程不安全的,如果多線程中并發通路可能導緻 UI 控件處于不可預期的狀态。
為什麼系統不對UI的通路加上鎖機制呢?
首先加上鎖機制會讓 UI 通路邏輯變得負責,其次鎖機制會降低 UI 的通路效率,阻塞某些線程的執行。鑒于以上兩個缺點,最簡單且高效的方法就是采用單線程模型來處理 UI 元件。
Handler的處理過程
Handler 建立完畢後,内部的 Looper 及 MessageQueue 就可以和 Handler 一起協同工作。通過 Handler 的 post 方法将一個 Runnable 投遞到 Handler 内部的 Looper 中去處理,也可以通過 Handler 的 send 方法發送一個消息,該消息同樣會在 Looper 中處理。而 post 方法最終也是通過 send 方法來完成的。
當 Handler 的 send 方法調用時,會調用 MessageQueue 的 enqueueMessage 方法将這個消息放到消息隊列中,然後 Looper 發現有消息來時就會處理這個消息,最終消息中的 Runable 或 Handler 的 HandlerMessage 方法就會被調用。而 Looper 是運作在 Handler 所線上程中,這樣一來 Handler 中的業務就被切換到建立 Handler 所在的線程中去執行了。

ThreadLocal (Java8)
運用場景
- 存儲目前線程的資料
- 複雜邏輯下的對象傳遞
内部原理
ThreadLocal 是一個泛型類,其定義為 public class ThreadLocal ,是以弄清楚 ThreadLocal 的 get 和 set 方法就可以明白其工作原理。
先看 set 方法:
public void set(T value) {
//1、擷取目前線程
Thread t = Thread.currentThread();
//2、擷取線程中的屬性 threadLocalMap ,如果threadLocalMap 不為空,
//則直接更新要儲存的變量值,否則建立threadLocalMap,并指派
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
// 初始化thradLocalMap 并指派
createMap(t, value);
}
ThreadLocalMap 是 ThreadLocal 的内部靜态類,而它的構成主要是用 Entry 來儲存資料 ,而且還是繼承的弱引用。在 Entry 内部使用 ThreadLocal 作為 key,使用我們設定的 value 作為 value。
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
}
//這個是threadlocal 的内部方法
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
//ThreadLocalMap 構造方法
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
ThreadLocalMap 其實是 Thread 線程的一個屬性值,而 ThreadLocal 是維護 ThreadLocalMap。ThreadLocal 的 get 方法如下:
public T get() {
//1、擷取目前線程
Thread t = Thread.currentThread();
//2、擷取目前線程的ThreadLocalMap
ThreadLocalMap map = getMap(t);
//3、如果map資料為空,
if (map != null) {
//3.1、擷取threalLocalMap中存儲的值
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
//如果是資料為null,則初始化,初始化的結果,TheralLocalMap中存放key值為threadLocal,值為null
return setInitialValue();
}
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
參考部落格:史上最全ThreadLocal 詳解(一)
MessageQueue工作原理
MessageQueue 組要包含兩個操作:插入和讀取。讀取操作本身伴随着删除操作,插入和讀取對應的方法分别為 enqueueMessage 和 next。MessageQueue 是通過一個單連結清單的資料結構來維護消息清單,在插入和删除上比較有優勢。
enqueueMessage 源碼如下:
boolean enqueueMessage(Message msg, long when) {
...
synchronized (this) {
...
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
next 源碼如下:
Message next() {
...
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
....
}
....
}
}
Looper工作原理
Looper 在 Android 消息機制中扮演着消息循環角色,它會不停從 Message 中檢視是否有新消息進行處理,沒有則一直阻塞。其構造函數如下:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Handler 工作需要 Looper,一個線程通過 Looper.prepare() 來建立一個 Looper,接着通過 Looper.loop() 來開啟消息循環。
new Thread("ThreadName"){
@Override
public void run(){
Looper.prepare();
Handler handler = new Handler();
Looper.looper();
}
}.start();
Looper 除了 prepare 方法外,還提供了 prepareMainLooper 方法,該方法主要是給 ActivityThread 建立 Looper 使用的,本質也是通過 prepare 來實作的。此外,Looper 還提供了一個 getMainLooper 方法,通過它可以在任何地方擷取到主線程的 Looper。Looper 也是可以退出的,它提供了 quit 和 quitSafely 來退出一個 Looper,兩者差別在于 quit 會直接退出,而 quickSafely 隻是設定一個退出辨別,然後把消息隊列的已有消息處理完畢後才安全退出。
Looper 在調用 loop 方法後,消息循環系統才會真正起作用,其實作如下所示:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
//queue.next()是一個阻塞方法,沒有消息時一直阻塞
Message msg = queue.next(); // might block
if (msg == null) {
//消息為空時則跳出循環
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
//msg.target為發送該消息的Handler對象
//發送的消息最終通過dispatchMessage()進行處理
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
Handler工作原理
Handler 的工作主要包含消息的發送和接收過程,消息的發送通過 post 的一系列方法以及 send 的一系列方法來實作。
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
可以發現,Handler 發送消息的過程僅僅時向消息對列中插入了一條消息,MessageQueue 的 next 方法就會傳回這條消息給 Looper,Looper 接收後開始處理,最終消息由 Looper 交由 Handler 處理,即 Handler 的 dispatchMessage 方法調用。
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
Message 的 callback 是一個 Runnable 對象,實際上就是 Handler 的 post 方法傳遞的 Runnable 參數。handleCallback 的邏輯如下:
private static void handleCallback(Message message) {
message.callback.run();
}
當 mCallback 不為 null 時就調用 mCallback 的 handleMessage 方法來處理消息,其定義如下:
/**
* Callback interface you can use when instantiating a Handler to avoid
* having to implement your own subclass of Handler.
*/
public interface Callback {
/**
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public boolean handleMessage(Message msg);
}
Handler 還有一個特殊的構造方法,就是通過一個特定的 Looper 來構造 Handler,其實作如下:
public Handler(Looper looper){
this(looper,null,false);
}
Handler 的預設構造方法 public Handler() 會調用如下的構造方法,解釋了在沒有 Looper 的子線程中會引發程式異常的原因。
public Handler(Callback callback, boolean async) {
...
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
參考書籍:《Android開發藝術探索》/任玉剛 | 電子工業出版社