動态維護中位數一般都是用雙堆解決 – 同理:動态維護第K大數
81. 資料流中位數
中文
English
數字是不斷進入數組的,在每次添加一個新的數進入數組的同時傳回目前新數組的中位數。
樣例
樣例1
輸入: [1,2,3,4,5]
輸出: [1,1,2,2,3]
樣例說明:
[1] 和 [1,2] 的中位數是 1.
[1,2,3] 和 [1,2,3,4] 的中位數是 2.
[1,2,3,4,5] 的中位數是 3.
樣例2
輸入: [4,5,1,3,2,6,0]
輸出: [4,4,4,3,3,3,3]
樣例說明:
[4], [4,5] 和 [4,5,1] 的中位數是 4.
[4,5,1,3], [4,5,1,3,2], [4,5,1,3,2,6] 和 [4,5,1,3,2,6,0] 的中位數是 3.
挑戰
時間複雜度為O(nlogn)
說明
中位數的定義:
- 這裡的
不等同于數學定義裡的中位數
。中位數
- 中位數是排序後數組的中間值,如果有數組中有n個數,則中位數為A[(n−1)/2]A[(n-1)/2]A[(n−1)/2]。
- 比如:數組A=[1,2,3]的中位數是2,數組A=[1,19]的中位數是1。
使用雙隊列,一個minheap,一個maxheap,還是比較惡心!!!
import heapq
class Solution:
"""
@param nums: A list of integers
@return: the median of numbers
"""
def medianII(self, nums):
# write your code here
ans = nums[:1]
if len(nums) <= 1:
return ans
max_heap = []
min_heap = [nums[0]]
for i in range(1, len(nums)):
m, n = len(max_heap), len(min_heap)
if m < n:
r = min_heap[0]
if nums[i] > r:
val = heapq.heappop(min_heap)
heapq.heappush(max_heap, -val)
heapq.heappush(min_heap, nums[i])
ans.append(-max_heap[0])
else:
heapq.heappush(max_heap, -nums[i])
ans.append(-max_heap[0])
elif m == n:
l = -max_heap[0]
r = min_heap[0]
if nums[i] <= l:
val = -heapq.heappop(max_heap)
heapq.heappush(min_heap, val)
heapq.heappush(max_heap, -nums[i])
ans.append(val)
elif nums[i] <= r:
heapq.heappush(min_heap, nums[i])
ans.append(nums[i])
else:
heapq.heappush(min_heap, nums[i])
ans.append(min_heap[0])
return ans
把比 median 小的放在 maxheap 裡,把比 median 大的放在 minheap 裡。median 單獨放在一個變量裡。 每次新增一個數的時候,先根據比目前的 median 大還是小丢到對應的 heap 裡。 丢完以後,再處理左右兩邊的平衡性:
- 如果左邊太少了,就把 median 丢到左邊,從右邊拿一個最小的出來作為 median。
- 如果右邊太少了,就把 median 丢到右邊,從左邊拿一個最大的出來作為新的 median。
import heapq
class Solution:
"""
@param nums: A list of integers
@return: the median of numbers
"""
def medianII(self, nums):
if not nums:
return []
self.median = nums[0]
self.maxheap = []
self.minheap = []
medians = [nums[0]]
for num in nums[1:]:
self.add(num)
medians.append(self.median)
return medians
def add(self, num):
if num < self.median:
heapq.heappush(self.maxheap, -num)
else:
heapq.heappush(self.minheap, num)
# balanace
if len(self.maxheap) > len(self.minheap):
heapq.heappush(self.minheap, self.median)
self.median = -heapq.heappop(self.maxheap)
elif len(self.maxheap) + 1 < len(self.minheap):
heapq.heappush(self.maxheap, -self.median)
self.median = heapq.heappop(self.minheap)
python heapq子產品 删除中間某一特定參數
python内的heapq提供heappush,heappop兩個方法,然而對于 删除 中間的某個參數沒有給出相應的方法:
from heapq import heappush, heappop, _siftdown, _siftup
# heap data structure, (value, key), value is used for sorting and key used for identifying
def heapdelete(heap,i):
nodeValue = heap[i];leafValue = heap[-1];
if nodeValue == leafValue:
heap.pop(-1)
elif nodeValue <= leafValue: # similar to heappop
heap[i], heap[-1] = heap[-1], heap[i]
minimumValue = heap.pop(-1)
if heap != []:
_siftup(heap, i)
else: # similar to heappush
heap[i], heap[-1] = heap[-1], heap[i]
minimumValue = heap.pop(-1)
_siftdown(heap, 0, i)
360. 滑動視窗的中位數
給定一個包含 n 個整數的數組,和一個大小為 k 的滑動視窗,從左到右在數組中滑動這個視窗,找到數組中每個視窗内的中位數。(如果數組個數是偶數,則在該視窗排序數字後,傳回第 N/2 個數字。)
Example 1:
Input:
[1,2,7,8,5]
3
Output:
[2,7,7]
Explanation:
At first the window is at the start of the array like this `[ | 1,2,7 | ,8,5]` , return the median `2`;
then the window move one step forward.`[1, | 2,7,8 | ,5]`, return the median `7`;
then the window move one step forward again.`[1,2, | 7,8,5 | ]`, return the median `7`;
Example 2:
Input:
[1,2,3,4,5,6,7]
4
Output:
[2,3,4,5]
Explanation:
At first the window is at the start of the array like this `[ | 1,2,3,4, | 5,6,7]` , return the median `2`;
then the window move one step forward.`[1,| 2,3,4,5 | 6,7]`, return the median `3`;
then the window move one step forward again.`[1,2, | 3,4,5,6 | 7 ]`, return the median `4`;
then the window move one step forward again.`[1,2,3,| 4,5,6,7 ]`, return the median `5`;
時間複雜度為 O(nlog(n))
使用 HashHeap。即一個 Hash + Heap。 Hash 的 key 是 Heap 裡的每個元素,值是這個元素在 Heap 中的下标。
要做這個題首先需要先做一下 Data Stream Median。這個題是隻在一個集合中增加數,不删除數,然後不斷的求中點。 Sliding Window Median,就是不斷的增加數,删除數,然後求中點。比 Data Stream Median 難的地方就在于如何支援删除數。
因為 Data Stream Median 的方法是用 兩個 Heap,一個 max heap,一個min heap。是以删除的話,就需要讓 heap 也支援删除操作。 由于 Python 的 heapq 并不支援 logn 時間内的删除操作,是以隻能自己實作一個 hash + heap 的方法。
總體時間複雜度 O(nlogk),n是元素個數,k 是 window 的大小。
算了,遇到這種題目就自認倒黴吧!!!
class HashHeap:
def __init__(self, desc=False):
self.hash = dict()
self.heap = []
self.desc = desc
@property
def size(self):
return len(self.heap)
def push(self, item):
self.heap.append(item)
self.hash[item] = self.size - 1
self._sift_up(self.size - 1)
def pop(self):
item = self.heap[0]
self.remove(item)
return item
def top(self):
return self.heap[0]
def remove(self, item):
if item not in self.hash:
return
index = self.hash[item]
self._swap(index, self.size - 1)
del self.hash[item]
self.heap.pop()
# in case of the removed item is the last item
if index < self.size:
self._sift_up(index)
self._sift_down(index)
def _smaller(self, left, right):
return right < left if self.desc else left < right
def _sift_up(self, index):
while index != 0:
parent = index // 2
if self._smaller(self.heap[parent], self.heap[index]):
break
self._swap(parent, index)
index = parent
def _sift_down(self, index):
if index is None:
return
while index * 2 < self.size:
smallest = index
left = index * 2
right = index * 2 + 1
if self._smaller(self.heap[left], self.heap[smallest]):
smallest = left
if right < self.size and self._smaller(self.heap[right], self.heap[smallest]):
smallest = right
if smallest == index:
break
self._swap(index, smallest)
index = smallest
def _swap(self, i, j):
elem1 = self.heap[i]
elem2 = self.heap[j]
self.heap[i] = elem2
self.heap[j] = elem1
self.hash[elem1] = j
self.hash[elem2] = i
class Solution:
"""
@param nums: A list of integers
@param k: An integer
@return: The median of the element inside the window at each moving
"""
def medianSlidingWindow(self, nums, k):
if not nums or len(nums) < k:
return []
self.maxheap = HashHeap(desc=True)
self.minheap = HashHeap()
for i in range(0, k - 1):
self.add((nums[i], i))
medians = []
for i in range(k - 1, len(nums)):
self.add((nums[i], i))
# print(self.maxheap.heap, self.median, self.minheap.heap)
medians.append(self.median)
self.remove((nums[i - k + 1], i - k + 1))
# print(self.maxheap.heap, self.median, self.minheap.heap)
return medians
def add(self, item):
if self.maxheap.size > self.minheap.size:
self.minheap.push(item)
else:
self.maxheap.push(item)
if self.maxheap.size == 0 or self.minheap.size == 0:
return
if self.maxheap.top() > self.minheap.top():
self.maxheap.push(self.minheap.pop())
self.minheap.push(self.maxheap.pop())
def remove(self, item):
self.maxheap.remove(item)
self.minheap.remove(item)
if self.maxheap.size < self.minheap.size:
self.maxheap.push(self.minheap.pop())
@property
def median(self):
return self.maxheap.top()[0]
stack的算法
12. 帶最小值操作的棧
實作一個棧, 支援以下操作:
-
将 val 壓入棧push(val)
-
将棧頂元素彈出, 并傳回這個彈出的元素pop()
-
傳回棧中元素的最小值min()
要求 O(1) 開銷.
樣例 2:
輸入:
push(1)
min()
push(2)
min()
push(3)
min()
輸出:
1
1
1
注意事項
保證棧中沒有數字時不會調用
min()
class MinStack:
def __init__(self):
# do intialization if necessary
self.stack = collections.deque()
"""
@param: number: An integer
@return: nothing
"""
def push(self, number):
# write your code here
if self.stack:
min_val = min(self.min(), number)
else:
min_val = number
self.stack.append((number, min_val))
"""
@return: An integer
"""
def pop(self):
# write your code here
return self.stack.pop()[0]
"""
@return: An integer
"""
def min(self):
# write your code here
return self.stack[-1][1]
這種題目還是要分析下才能快速寫出來!!!差點就被唬住了!!!
575. 字元串解碼
給出一個表達式
s
,此表達式包括數字,字母以及方括号。在方括号前的數字表示方括号内容的重複次數(括号内的内容可以是字元串或另一個表達式),請将這個表達式展開成一個字元串。
輸入: S = abc3[a]
輸出: "abcaaa"
輸入: S = 3[2[ad]3[pf]]xyz
輸出: "adadpfpfpfadadpfpfpfadadpfpfpfxyz"
你可以不通過遞歸的方式完成展開嗎?
數字隻能出現在“[]”前面。
LETTERS = set("abcdefghijklmnopqrstuvwxyz")
NUMS = set("0123456789")
class Solution:
"""
@param s: an expression includes numbers, letters and brackets
@return: a string
"""
def expressionExpand(self, s):
# write your code here
# S = 3[2[ad]3[pf]]xyz
# = 3 f(2[ad]3[pf]) + xyz
# = 2*f(ad) + 3*f(pf)
self.braces = self.calc_brace_pos(s)
return self.helper(s, 0, len(s)-1)
def helper(self, s, start, end):
ans = ""
digit = 0
i = start
while i <= end:
c = s[i].lower()
if c in NUMS:
digit = 10*digit + (ord(c) - ord('0'))
i += 1
elif c in LETTERS:
ans += s[i]
digit = 0
i += 1
elif c == '[': # digit is over
ans += self.helper(s, i+1, self.braces[i]-1)*digit
digit = 0
i = self.braces[i]+1
return ans
def calc_brace_pos(self, s):
brace_stack = []
ans = {}
for i,c in enumerate(s):
if c == '[':
brace_stack.append(i)
elif c == ']':
ans[brace_stack.pop()] = i
return ans
遞歸的還可以寫寫,非遞歸的,狀态機太複雜了!!!
• 改成非遞歸需要棧
• 數字和字元都push
– 見到“[”push目前數字入棧
– 字元直接壓棧
• 見到“]”就pop字元直到碰到數字A
– 這些字元組成的字元串重複A次
把所有字元一個個放到 stack 裡,當碰到 "]" 的時候,就從 stack 把對應的字元串和重複次數找到,展開,然後再丢回 stack 裡,
class Solution:
"""
@param s: an expression includes numbers, letters and brackets
@return: a string
"""
def expressionExpand(self, s):
stack = []
for c in s:
if c == ']':
strs = []
while stack and stack[-1] != '[':
strs.append(stack.pop())
# skip '['
stack.pop()
repeats = 0
base = 1
while stack and stack[-1].isdigit():
repeats += (ord(stack.pop()) - ord('0')) * base
base *= 10
stack.append(''.join(reversed(strs)) * repeats)
else:
stack.append(c)
return ''.join(stack)
122. 直方圖最大矩形覆寫
給出的n個非負整數表示每個直方圖的高度,每個直方圖的寬均為1,在直方圖中找到最大的矩形面積。
Input:[2,1,5,6,2,3]
Output:10
Explanation:
The third and fourth rectangular truncated rectangle has an area of 2*5=10.
Input:[1,1]
Output:2
Explanation:
The first and second rectangular truncated rectangle has an area of 2*1=2.
經典題目:坑在前後加0
class Solution:
def largestRectangleArea(self, heights) -> int:
heights = [0] + heights + [0]
stack, max_area = [], 0
for hi_index, height in enumerate(heights):
while stack and height < heights[stack[-1]]:
popped_index = stack.pop()
lo_index = stack[-1] + 1
area = heights[popped_index] * (hi_index - lo_index)
max_area = max(max_area, area)
stack.append(hi_index)
return max_area