天天看點

Pytorch torch.optim優化器個性化使用

一、簡化前饋網絡LeNet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

import

torch as t

class

LeNet(t.nn.Module):

def

__init__(

self

):

super

(LeNet, 

self

).__init__()

self

.features 

=

t.nn.Sequential(

t.nn.Conv2d(

3

6

5

),

t.nn.ReLU(),

t.nn.MaxPool2d(

2

2

),

t.nn.Conv2d(

6

16

5

),

t.nn.ReLU(),

t.nn.MaxPool2d(

2

2

)

)

# 由于調整shape并不是一個class層,

# 是以在涉及這種操作(非nn.Module操作)需要拆分為多個模型

self

.classifiter 

=

t.nn.Sequential(

t.nn.Linear(

16

*

5

*

5

120

),

t.nn.ReLU(),

t.nn.Linear(

120

84

),

t.nn.ReLU(),

t.nn.Linear(

84

10

)

)

def

forward(

self

, x):

=

self

.features(x)

=

x.view(

-

1

16

*

5

*

5

)

=

self

.classifiter(x)

return

x

net 

=

LeNet()

二、優化器基本使用方法

  1. 建立優化器執行個體
  2. 循環:
    1. 清空梯度
    2. 向前傳播
    3. 計算Loss
    4. 反向傳播
    5. 更新參數

from

torch 

import

optim

# 通常的step優化過程

optimizer 

=

optim.SGD(params

=

net.parameters(), lr

=

1

)

optimizer.zero_grad()  

# net.zero_grad()

input_ 

=

t.autograd.Variable(t.randn(

1

3

32

32

))

output 

=

net(input_)

output.backward(output)

optimizer.step()

三、網絡子產品參數定制

為不同的子網絡參數不同的學習率,finetune常用,使分類器學習率參數更高,學習速度更快(理論上)。

1.經由建構網絡時劃分好的模組進行學習率設定,

# # 直接對不同的網絡子產品制定不同學習率

optimizer 

=

optim.SGD([{

'params'

: net.features.parameters()}, 

# 預設lr是1e-5

{

'params'

: net.classifiter.parameters(), 

'lr'

1e

-

2

}], lr

=

1e

-

5

)

 2.以網絡層對象為機關進行分組,并設定學習率

# # 以層為機關,為不同層指定不同的學習率

# ## 提取指定層對象

special_layers 

=

t.nn.ModuleList([net.classifiter[

], net.classifiter[

3

]])

# ## 擷取指定層參數id

special_layers_params 

=

list

(

map

(

id

, special_layers.parameters()))

print

(special_layers_params)

# ## 擷取非指定層的參數id

base_params 

=

filter

(

lambda

p: 

id

(p) 

not

in

special_layers_params, net.parameters())

optimizer 

=

t.optim.SGD([{

'params'

: base_params},

{

'params'

: special_layers.parameters(), 

'lr'

0.01

}], lr

=

0.001

)

四、在訓練中動态的調整學習率

'''調整學習率'''

# 建立optimizer或者修改optimizer.params_groups對應的學習率

# # 建立optimizer更簡單也更推薦,optimizer十分輕量級,是以開銷很小

# # 但是新的優化器會初始化動量等狀态資訊,這對于使用動量的優化器(momentum參數的sgd)可能會造成收斂中的震蕩

# ## optimizer.param_groups:長度2的list,optimizer.param_groups[0]:長度6的字典

print

(optimizer.param_groups[

][

'lr'

])

old_lr 

=

0.1

optimizer 

=

optim.SGD([{

'params'

: net.features.parameters()},

{

'params'

: net.classifiter.parameters(), 

'lr'

: old_lr

*

0.1

}], lr

=

1e

-

5

)

 可以看到optimizer.param_groups結構,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了優化器的各項參數。

  • torch.optim的靈活使用

  • 重寫sgd優化器
import torch
from torch.optim.optimizer import Optimizer, required

class SGD(Optimizer):
    def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay1=0, weight_decay2=0, nesterov=False):
        defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
                        weight_decay1=weight_decay1, weight_decay2=weight_decay2, nesterov=nesterov)
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError("Nesterov momentum requires a momentum and zero dampening")
        super(SGD, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(SGD, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('nesterov', False)

    def step(self, closure=None):
        """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            weight_decay1 = group['weight_decay1']
            weight_decay2 = group['weight_decay2']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']

            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay1 != 0:
                    d_p.add_(weight_decay1, torch.sign(p.data))
                if weight_decay2 != 0:
                    d_p.add_(weight_decay2, p.data)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
                        buf.mul_(momentum).add_(d_p)
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf

                p.data.add_(-group['lr'], d_p)

        return loss      

C/C++基本文法學習

STL

C++ primer

繼續閱讀