天天看點

ACM數論-歐幾裡得與拓展歐幾裡得算法

歐幾裡德算法又稱輾轉相除法,用于計算兩個整數a,b的最大公約數。

基本算法:設a=qb+r,其中a,b,q,r都是整數,則gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。

遞歸版算法:

1 int gcd(int a,int b)
2 {
3     if(b==0)
4         return a;
5     return 
6         gcd(b,a%b);
7 }      

遞歸優化版:

1 int gcd(int a,int b)
2  {
3      return b ? gcd(b,a%b) : a;
4  }      

疊代版:

1 int Gcd(int a, int b)
 2 {
 3     while(b != 0)
 4     {
 5       int r = b;
 6       b = a % b;
 7       a = r;
 8     }
 9     return a;
10 }      

擴充歐幾裡德算法

基本算法:對于不完全為 0 的非負整數 a,b,gcd(a,b)表示 a,b 的最大公約數,必然存在整數對 x,y ,使得 gcd(a,b)=ax+by。

證明:設 a>b。

  1,顯然當 b=0,gcd(a,b)=a。此時 x=1,y=0;

  2,ab!=0 時

  設 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根據樸素的歐幾裡德原理有 gcd(a,b)=gcd(b,a mod b);

  則:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根據恒等定理得:x1=y2; y1=x2-(a/b)*y2;

     這樣我們就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

   上面的思想是以遞歸定義的,因為 gcd 不斷的遞歸求解一定會有個時候 b=0,是以遞歸可以結束。

1 int exgcd(int a,int b,int &x,int &y)
 2 {
 3     if(b==0)
 4     {
 5         x=1;
 6         y=0;
 7         return a;
 8     }
 9     int r=exgcd(b,a%b,x,y);
10     int t=x;
11     x=y;
12     y=t-a/b*y;
13     return r;
14 }      

非遞歸版:

1 int exgcd(int m,int n,int &x,int &y)
 2 {
 3     int x1,y1,x0,y0;
 4     x0=1; y0=0;
 5     x1=0; y1=1;
 6     x=0; y=1;
 7     int r=m%n;
 8     int q=(m-r)/n;
 9     while(r)
10     {
11         x=x0-q*x1; y=y0-q*y1;
12         x0=x1; y0=y1;
13         x1=x; y1=y;
14         m=n; n=r; r=m%n;
15         q=(m-r)/n;
16     }
17     return n;
18 }      

擴充歐幾裡德算法的應用主要有以下三方面:

(1)求解不定方程;

(2)求解模線性方程(線性同餘方程);

(3)求解模的逆元;

1 bool linear_equation(int a,int b,int c,int &x,int &y)
2 {
3     int d=exgcd(a,b,x,y);
4     if(c%d)
5         return false;
6     int k=c/d;
7     x*=k; y*=k;    //求得的隻是其中一組解
8     return true;
9 }      
1 bool modular_linear_equation(int a,int b,int n)
 2 {
 3     int x,y,x0,i;
 4     int d=exgcd(a,n,x,y);
 5     if(b%d)
 6         return false;
 7     x0=x*(b/d)%n;   //特解
 8     for(i=1;i<d;i++)
 9         printf("%d\n",(x0+i*(n/d))%n);
10     return true;
11 }