天天看點

狄利克雷卷積

數論函數

陪域:包含值域的任意集合

數論函數:定義域為正整數,陪域為複數的函數

積性函數:對于函數$f(n)$,若存在任意互質的數$a,b$,使得$a*b=n$,并且$f(n)=f(a)*f(b)$,那麼函數$f(n)$被稱為積性函數

常見積性函數:

$1(i)=1$

$f(i)=i$

$\varphi \left( i\right)$(歐拉函數)

$\mu \left( i\right)$(莫比烏斯函數)

拓展:完全積性函數:對于函數$f(n)$,若存在任意數$a,b$(這裡取消掉了互質的限制),使得$a*b=n$,并且$f(n)=f(a)*f(b)$,那麼函數$f(n)$被稱為完全積性函數

狄利克雷卷積

定義函數$f,g$為數論函數

則他們的狄利克雷卷積可以表示為:$f*g$,

設$h=f*g$

$$h\left( n\right) =\sum _{d|n}f\left( d\right) g\left( \dfrac {n}{d}\right)$$

顯然,$h$也是積性函數

證明:

設$n=a*b$,且$gcd(a, b) = 1$

$$h(n)=\sum_{d_1|a,d_2|b}f(d_1d_2)g(\dfrac {a}{d_1}\dfrac {b}{d_2})$$

$$=\sum_{d_1|a,d_2|b}f(d_1)f(d_2)g(\dfrac {a}{d_1})g(\dfrac {b}{d_2})$$

$$=\sum_{d_1|a}f(d_1)g(\dfrac {a}{d_1})\sum_{d_2|b}f(d_2)g(\dfrac {b}{d_2})$$

$$=h(a)*h(b)$$

運算法則

交換律:$f * g = g * f$

結合律:$(f * g) * h = f * (g * h)$

配置設定率:$f * (g + h) = f * g + f * h = (g + h) * f$

如果$f, g$為積性函數,那麼$f * g$也是積性函數

注意最後一點非常重要!!

作者:自為風月馬前卒

個人部落格http://attack204.com//

出處:http://zwfymqz.cnblogs.com/

本文版權歸作者和部落格園共有,歡迎轉載,但未經作者同意必須保留此段聲明,且在文章頁面明顯位置給出原文連接配接,否則保留追究法律責任的權利。