pytorch 0.4.1 docker位址:
https://hub.docker.com/r/linkoffate/torchen
https://hub.docker.com/r/airaria/pytorch0.4.1
直接上幹貨,CUDA9.0版本對應的pytorch是0.4.1,使用其他版本pytorch不支援,一定要安裝0.4.1版本,github上的mmdetection安裝對應CUDA9.0的在branch0.4.1裡,但是注意!!!!!!!!!!github上不知道為什麼,pytorch0.4.1分支裡的少一些檔案我安裝了好幾次進到提示少deform_conv_cuda等檔案,又對比主分支才發現少了很多檔案.
解決辦法:
1.git項目(不在github上)
git clone https://gitee.com/mirrors/mmdetection.git
2.切換到pytorch-0.4.1分支(針對CUDA9.0使用者)
cd mmdetection
git checkout pytorch-0.4.1
3.安裝
3.1建立虛拟環境(需要python3.5+)
conda create -n python3.5 python=3.5.4
conda activate python3.5
3.2安裝依賴庫(兩種安裝方式二選一)
conda install pytorch=0.4.1 -c pytorch #pip install pytorch=0.4.1 -c pytorch
conda install cython #pip install cython
cd mmdetection#如果已經在此目錄不需要此條指令
./compile.sh
3.3安裝mmcv
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install .
4.安裝mmdet
python setup.py install #pip install .
測試代碼
預訓練模型需要自己下載下傳
- import mmcv
- from mmcv.runner import load_checkpoint
- from mmdet.models import build_detector
- from mmdet.apis import inference_detector, show_result
- cfg = mmcv.Config.fromfile('/home/stardust/mmdetection/configs/faster_rcnn_r50_fpn_1x.py')
- cfg.model.pretrained = None
- # 建構網絡,載入模型
- model = build_detector(cfg.model, test_cfg=cfg.test_cfg)
- # _ = load_checkpoint(model, 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth')
- # 如果通過網盤下載下傳,取消下一行代碼的注釋,并且注釋掉上一行
- _ = load_checkpoint(model, 'model/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth')
- # 測試一張圖檔
- img = mmcv.imread('test.jpg')
- result = inference_detector(model, img, cfg)
- show_result(img, result)
- # 測試多張圖檔
- # imgs = ['test1.jpg', 'test2.jpg']
- # for i, result in enumerate(inference_detector(model, imgs, cfg, device='cuda:0')):
- # print(i, imgs[i])
- # show_result(imgs[i], result)

原文連結:http://kmanong.top/kmn/qxw/form/article?id=17694&cate=56
如果這篇文章幫助到了你,你可以請作者喝一杯咖啡