簡紹
應用程式和系統日志可以幫助我們了解叢集内部的運作情況,日志對于我們調試問題和監視叢集情況也是非常有用的。而且大部分的應用都會有日志記錄,對于傳統的應用大部分都會寫入到本地的日志檔案之中。對于容器化應用程式來說則更簡單,隻需要将日志資訊寫入到 stdout 和 stderr 即可,容器預設情況下就會把這些日志輸出到主控端上的一個 JSON 檔案之中,同樣也可以通過 docker logs 或者 kubectl logs 來檢視到對應的日志資訊。
Kubernetes 中比較流行的日志收集解決方案是 Elasticsearch、Fluentd 和 Kibana(EFK)技術棧,也是官方現在比較推薦的一種方案。
Elasticsearch 是一個實時的、分布式的可擴充的搜尋引擎,允許進行全文、結構化搜尋,它通常用于索引和搜尋大量日志資料,也可用于搜尋許多不同類型的文檔。Elasticsearch 通常與 Kibana 一起部署。
Kibana 是 Elasticsearch 的一個功能強大的資料可視化 Dashboard,Kibana 允許你通過 web 界面來浏覽 Elasticsearch 日志資料。
Fluentd是一個流行的開源資料收集器,我們将在 Kubernetes 叢集節點上安裝 Fluentd,通過擷取容器日志檔案、過濾和轉換日志資料,然後将資料傳遞到 Elasticsearch 叢集,在該叢集中對其進行索引和存儲。
拓撲圖

ps: 因為我的實體機資源有限,并且還要在叢集中部署myweb、prometheus、jenkins等,是以這裡我隻部署EFK,正常情況,這套方案也足夠使用了。
配置啟動一個可擴充的 Elasticsearch 叢集,然後在 Kubernetes 叢集中建立一個 Kibana 應用,最後通過 DaemonSet 來運作 Fluentd,以便它在每個 Kubernetes 工作節點上都可以運作一個 Pod。
檢查叢集狀态
ceph叢集
# ceph -s
cluster:
id: ed4d59da-c861-4da0-bbe2-8dfdea5be796
health: HEALTH_WARN
application not enabled on 1 pool(s)
services:
mon: 3 daemons, quorum bs-k8s-harbor,bs-k8s-gitlab,bs-k8s-ceph
mgr: bs-k8s-ceph(active), standbys: bs-k8s-harbor, bs-k8s-gitlab
osd: 6 osds: 6 up, 6 in
data:
pools: 1 pools, 128 pgs
objects: 92 objects, 285 MiB
usage: 6.7 GiB used, 107 GiB / 114 GiB avail
pgs: 128 active+clean
原因:這是因為未在池上啟用應用程式。
解決:
# ceph osd lspools
6 webapp
# ceph osd pool application enable webapp rbd
enabled application 'rbd' on pool 'webapp'
# ceph -s
......
health: HEALTH_OK
kubernetes叢集
# kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-kube-controllers-6cf5b744d7-rxt86 1/1 Running 0 47h
kube-system calico-node-25dlc 1/1 Running 2 2d4h
kube-system calico-node-49q4n 1/1 Running 2 2d4h
kube-system calico-node-4gmcp 1/1 Running 1 2d4h
kube-system calico-node-gt4bt 1/1 Running 1 2d4h
kube-system calico-node-svcdj 1/1 Running 1 2d4h
kube-system calico-node-tkrqt 1/1 Running 1 2d4h
kube-system coredns-76b74f549-dkjxd 1/1 Running 0 47h
kube-system dashboard-metrics-scraper-64c8c7d847-dqbx2 1/1 Running 0 46h
kube-system kubernetes-dashboard-85c79db674-bnvlk 1/1 Running 0 46h
kube-system metrics-server-6694c7dd66-hsbzb 1/1 Running 0 47h
kube-system traefik-ingress-controller-m8jf9 1/1 Running 0 47h
kube-system traefik-ingress-controller-r7cgl 1/1 Running 0 47h
myweb rbd-provisioner-9cf46c856-b9pm9 1/1 Running 1 7h2m
myweb wordpress-6677ff7bd-sc45d 1/1 Running 0 6h13m
myweb wordpress-mysql-6d7bd496b4-62dps 1/1 Running 0 5h51m
# kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
20.0.0.201 563m 14% 1321Mi 103%
20.0.0.202 359m 19% 1288Mi 100%
20.0.0.203 338m 18% 1272Mi 99%
20.0.0.204 546m 14% 954Mi 13%
20.0.0.205 516m 13% 539Mi 23%
20.0.0.206 375m 9% 1123Mi 87%
建立namespace
這裡我準備将所有efk放入assembly名稱空間下。 assembly:元件
# vim namespace.yaml
[root@bs-k8s-master01 efk]# pwd
/data/k8s/efk
[root@bs-k8s-master01 efk]# cat namespace.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: namespace.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: v1
kind: Namespace
metadata:
name: assembly
建立動态RBD StorageClass
建立assembly pool
bs-k8s-ceph
# ceph osd pool create assembly 128
pool 'assembly' created
# ceph auth get-or-create client.assembly mon 'allow r' osd 'allow class-read, allow rwx pool=assembly' -o ceph.client.assemply.keyring
建立Storageclass
bs-k8s-master01
# ceph auth get-key client.assembly | base64
QVFBWjIzRmVDa0RnSGhBQWQ0TXJWK2YxVThGTUkrMjlva1JZYlE9PQ==
# cat ceph-efk-secret.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: ceph-jenkins-secret.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: v1
kind: Secret
metadata:
name: ceph-admin-secret
namespace: assembly
data:
key: QVFBaUptcGU0R3RDREJBQWhhM1E3NnowWG5YYUl1VVI2MmRQVFE9PQ==
type: kubernetes.io/rbd
---
apiVersion: v1
kind: Secret
metadata:
name: ceph-assembly-secret
namespace: assembly
data:
key: QVFBWjIzRmVDa0RnSGhBQWQ0TXJWK2YxVThGTUkrMjlva1JZYlE9PQ==
type: kubernetes.io/rbd
# kubectl apply -f ceph-efk-secret.yaml
secret/ceph-admin-secret created
secret/ceph-assembly-secret created
# cat ceph-efk-storageclass.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: ceph-jenkins-storageclass.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: ceph-efk
namespace: assembly
annotations:
storageclass.kubernetes.io/is-default-class: "false"
provisioner: ceph.com/rbd
reclaimPolicy: Retain
parameters:
monitors: 20.0.0.205:6789,20.0.0.206:6789,20.0.0.207:6789
adminId: admin
adminSecretName: ceph-admin-secret
adminSecretNamespace: assembly
pool: assembly
fsType: xfs
userId: assembly
userSecretName: ceph-assembly-secret
imageFormat: "2"
imageFeatures: "layering"
# kubectl apply -f ceph-efk-storageclass.yaml
storageclass.storage.k8s.io/ceph-efk created
ceph rbd和kubernetes結合需要第三方插件
# cat external-storage-rbd-provisioner.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: external-storage-rbd-provisioner.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: v1
kind: ServiceAccount
metadata:
name: rbd-provisioner
namespace: assembly
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: rbd-provisioner
rules:
- apiGroups: [""]
resources: ["persistentvolumes"]
verbs: ["get", "list", "watch", "create", "delete"]
- apiGroups: [""]
resources: ["persistentvolumeclaims"]
verbs: ["get", "list", "watch", "update"]
- apiGroups: ["storage.k8s.io"]
resources: ["storageclasses"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["events"]
verbs: ["create", "update", "patch"]
- apiGroups: [""]
resources: ["endpoints"]
verbs: ["get", "list", "watch", "create", "update", "patch"]
- apiGroups: [""]
resources: ["services"]
resourceNames: ["kube-dns"]
verbs: ["list", "get"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: rbd-provisioner
subjects:
- kind: ServiceAccount
name: rbd-provisioner
namespace: assembly
roleRef:
kind: ClusterRole
name: rbd-provisioner
apiGroup: rbac.authorization.k8s.io
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: rbd-provisioner
namespace: assembly
rules:
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: rbd-provisioner
namespace: assembly
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: rbd-provisioner
subjects:
- kind: ServiceAccount
name: rbd-provisioner
namespace: assembly
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: rbd-provisioner
namespace: assembly
spec:
replicas: 1
selector:
matchLabels:
app: rbd-provisioner
strategy:
type: Recreate
template:
metadata:
labels:
app: rbd-provisioner
spec:
containers:
- name: rbd-provisioner
image: "harbor.linux.com/rbd/rbd-provisioner:latest"
imagePullPolicy: IfNotPresent
env:
- name: PROVISIONER_NAME
value: ceph.com/rbd
imagePullSecrets:
- name: k8s-harbor-login
serviceAccount: rbd-provisioner
nodeSelector: ## 設定node篩選器,在特定label的節點上啟動
rbd: "true"
# kubectl apply -f external-storage-rbd-provisioner.yaml
serviceaccount/rbd-provisioner created
clusterrole.rbac.authorization.k8s.io/rbd-provisioner unchanged
clusterrolebinding.rbac.authorization.k8s.io/rbd-provisioner configured
role.rbac.authorization.k8s.io/rbd-provisioner created
rolebinding.rbac.authorization.k8s.io/rbd-provisioner created
deployment.apps/rbd-provisioner created
# kubectl get pods -n assembly
NAME READY STATUS RESTARTS AGE
rbd-provisioner-9cf46c856-6qzll 1/1 Running 0 71s
建立Elasticsearch
建立elasticsearch-svc.yaml
定義了一個名為 elasticsearch 的 Service,指定标簽app=elasticsearch,當我們将 Elasticsearch StatefulSet 與此服務關聯時,服務将傳回帶有标簽app=elasticsearch的 Elasticsearch Pods 的 DNS A 記錄,然後設定clusterIP=None,将該服務設定成無頭服務。最後,我們分别定義端口9200、9300,分别用于與 REST API 互動,以及用于節點間通信。
# cat elasticsearch-svc.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: elasticsearch-svc.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
kind: Service
apiVersion: v1
metadata:
name: elasticsearch
namespace: assembly
labels:
app: elasticsearch
spec:
selector:
app: elasticsearch
clusterIP: None
ports:
- port: 9200
name: rest
- port: 9300
name: inter-node
# kubectl apply -f elasticsearch-svc.yaml
service/elasticsearch created
已經為 Pod 設定了無頭服務和一個穩定的域名.elasticsearch.assmbly.svc.cluster.local,接下來通過 StatefulSet 來建立具體的 Elasticsearch 的 Pod 應用.
Kubernetes StatefulSet 允許為 Pod 配置設定一個穩定的辨別和持久化存儲,Elasticsearch 需要穩定的存儲來保證 Pod 在重新排程或者重新開機後的資料依然不變,是以需要使用 StatefulSet 來管理 Pod。
建立動态pv
# cat elasticsearch-pvc.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-18
#FileName: elasticsearch-pvc.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: ceph-elasticsearch
namespace: assembly
labels:
app: elasticsearch
spec:
storageClassName: ceph-efk
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
#kubectl apply -f ceph-efk-storageclass.yaml
# cat elasticsearch-statefulset.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: elasticsearch-storageclass.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: es-cluster
namespace: assembly
spec:
serviceName: elasticsearch
selector:
matchLabels:
app: elasticsearch
template:
metadata:
labels:
app: elasticsearch
spec:
imagePullSecrets:
- name: k8s-harbor-login
containers:
- name: elasticsearch
image: harbor.linux.com/efk/elasticsearch-oss:6.4.3
resources:
limits:
cpu: 1000m
requests:
cpu: 100m
ports:
- containerPort: 9200
name: rest
protocol: TCP
- containerPort: 9300
name: inter-node
protocol: TCP
volumeMounts:
- name: data
mountPath: /usr/share/elasticsearch/data
env:
- name: cluster.name
value: k8s-logs
- name: node.name
valueFrom:
fieldRef:
fieldPath: metadata.name
# - name: discovery.zen.ping.unicast.hosts
# value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
# - name: discovery.zen.minimum_master_nodes
# value: "2"
- name: ES_JAVA_OPTS
value: "-Xms512m -Xmx512m"
initContainers:
- name: fix-permissions
image: busybox
command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
securityContext:
privileged: true
volumeMounts:
- name: data
mountPath: /usr/share/elasticsearch/data
- name: increase-vm-max-map
image: busybox
command: ["sysctl", "-w", "vm.max_map_count=262144"]
securityContext:
privileged: true
- name: increase-fd-ulimit
image: busybox
command: ["sh", "-c", "ulimit -n 65536"]
securityContext:
privileged: true
volumes:
- name: data
persistentVolumeClaim:
claimName: ceph-elasticsearch
nodeSelector: ## 設定node篩選器,在特定label的節點上啟動
elasticsearch: "true"
節點打标簽
# kubectl label nodes 20.0.0.204 elasticsearch=true
node/20.0.0.204 labeled
# kubectl apply -f elasticsearch-statefulset.yaml
# kubectl get pods -n assembly
NAME READY STATUS RESTARTS AGE
es-cluster-0 1/1 Running 0 2m15s
rbd-provisioner-9cf46c856-6qzll 1/1 Running 0 37m
Pods 部署完成後,我們可以通過請求一個 REST API 來檢查 Elasticsearch 叢集是否正常運作。使用下面的指令将本地端口9200轉發到 Elasticsearch 節點(es-cluster-0)對應的端口
# kubectl port-forward es-cluster-0 9200:9200 --namespace=assembly
Forwarding from 127.0.0.1:9200 -> 9200
# curl http://localhost:9200/_cluster/state?pretty
{
"cluster_name" : "k8s-logs",
"compressed_size_in_bytes" : 234,
"cluster_uuid" : "PopKT5FLROqyBYlRvvr7kw",
"version" : 2,
"state_uuid" : "ubOKSevGRVe4iR5JXODjDA",
"master_node" : "vub5ot69Thu8igd4qeiZBg",
"blocks" : { },
"nodes" : {
"vub5ot69Thu8igd4qeiZBg" : {
"name" : "es-cluster-0",
"ephemeral_id" : "9JjNmdOyRomyYsHAO1IQ5Q",
"transport_address" : "172.20.46.85:9300",
"attributes" : { }
}
},
建立Kibana
Elasticsearch 叢集啟動成功了,接下來可以來部署 Kibana 服務,建立一個名為 kibana.yaml 的檔案。
# cat kibana.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: kibana.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: v1
kind: Service
metadata:
name: kibana
namespace: assembly
labels:
app: kibana
spec:
ports:
- port: 5601
type: NodePort
selector:
app: kibana
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kibana
namespace: assembly
labels:
app: kibana
spec:
selector:
matchLabels:
app: kibana
template:
metadata:
labels:
app: kibana
spec:
imagePullSecrets:
- name: k8s-harbor-login
containers:
- name: kibana
image: harbor.linux.com/efk/kibana-oss:6.4.3
resources:
limits:
cpu: 1000m
requests:
cpu: 100m
env:
- name: ELASTICSEARCH_URL
value: http://elasticsearch:9200
ports:
- containerPort: 5601
nodeSelector: ## 設定node篩選器,在特定label的節點上啟動
kibana: "true"
節點打标簽
# kubectl label nodes 20.0.0.204 kibana=true
node/20.0.0.204 labeled
# kubectl apply -f kibana.yaml
service/kibana created
deployment.apps/kibana created
# kubectl get pods -n assembly
NAME READY STATUS RESTARTS AGE
es-cluster-0 1/1 Running 0 8m4s
kibana-598987f498-k8ff9 1/1 Running 0 70s
rbd-provisioner-9cf46c856-6qzll 1/1 Running 0 43m
定義了兩個資源對象,一個 Service 和 Deployment,為了測試友善,我們将 Service 設定為了 NodePort 類型,Kibana Pod 中配置都比較簡單,唯一需要注意的是我們使用 ELASTICSEARCH_URL 這個環境變量來設定Elasticsearch 叢集的端點和端口,直接使用 Kubernetes DNS 即可,此端點對應服務名稱為 elasticsearch,由于是一個 headless service,是以該域将解析為 Elasticsearch Pod 的 IP 位址清單
# kubectl get svc --namespace=assembly
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
elasticsearch ClusterIP None <none> 9200/TCP,9300/TCP 50m
kibana NodePort 10.68.123.234 <none> 5601:22693/TCP 2m22s
代理kibana
這裡我讓kibana走traefik代理
# cat kibana-ingreeroute.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: kibana-ingreeroute.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
name: kibana
namespace: assembly
spec:
entryPoints:
- web
routes:
- match: Host(`kibana.linux.com`)
kind: Rule
services:
- name: kibana
port: 5601
# kubectl apply -f kibana-ingreeroute.yaml
ingressroute.traefik.containo.us/kibana created
traefik代理成功,本地主機hosts解析
web通路成功!
建立Fluentd
Fluentd是一個高效的日志聚合器,是用 Ruby 編寫的,并且可以很好地擴充。對于大部分企業來說,Fluentd 足夠高效并且消耗的資源相對較少,另外一個工具Fluent-bit更輕量級,占用資源更少,但是插件相對 Fluentd 來說不夠豐富,是以整體來說,Fluentd 更加成熟,使用更加廣泛,是以這裡使用 Fluentd 來作為日志收集工具。
工作原理
Fluentd 通過一組給定的資料源抓取日志資料,處理->轉換成結構化的資料格式将它們轉發給其他服務,比如 Elasticsearch、對象存儲等等。Fluentd 支援超過300個日志存儲和分析服務,是以在這方面是非常靈活的。主要運作步驟如下:
首先 Fluentd 從多個日志源擷取資料
結構化并且标記這些資料
然後根據比對的标簽将資料發送到多個目标服務去
Fluentd拓撲圖
配置
通過一個配置檔案來告訴 Fluentd 如何采集、處理資料的
日志源配置
比如這裡為了收集 Kubernetes 節點上的所有容器日志,就需要做如下的日志源配置:
<source>
@id fluentd-containers.log
@type tail
path /var/log/containers/*.log
pos_file /var/log/fluentd-containers.log.pos
time_format %Y-%m-%dT%H:%M:%S.%NZ
tag raw.kubernetes.*
format json
read_from_head true
</source>
上面配置部分參數說明如下:
- id:表示引用該日志源的唯一辨別符,該辨別可用于進一步過濾和路由結構化日志資料
- type:Fluentd 内置的指令,
表示 Fluentd 從上次讀取的位置通過 tail 不斷擷取資料,另外一個是tail
表示通過一個 GET 請求來收集資料。http
- path:
類型下的特定參數,告訴 Fluentd 采集tail
目錄下的所有日志,這是 docker 在 Kubernetes 節點上用來存儲運作容器 stdout 輸出日志資料的目錄。/var/log/containers
- pos_file:檢查點,如果 Fluentd 程式重新啟動了,它将使用此檔案中的位置來恢複日志資料收集。
- tag:用來将日志源與目标或者過濾器比對的自定義字元串,Fluentd 比對源/目标标簽來路由日志資料。
路由配置
上面是日志源的配置,接下來看看如何将日志資料發送到 Elasticsearch:
<match **>
@id elasticsearch
@type elasticsearch
@log_level info
include_tag_key true
type_name fluentd
host "#{ENV['OUTPUT_HOST']}"
port "#{ENV['OUTPUT_PORT']}"
logstash_format true
<buffer>
@type file
path /var/log/fluentd-buffers/kubernetes.system.buffer
flush_mode interval
retry_type exponential_backoff
flush_thread_count 2
flush_interval 5s
retry_forever
retry_max_interval 30
chunk_limit_size "#{ENV['OUTPUT_BUFFER_CHUNK_LIMIT']}"
queue_limit_length "#{ENV['OUTPUT_BUFFER_QUEUE_LIMIT']}"
overflow_action block
</buffer>
- match:辨別一個目标标簽,後面是一個比對日志源的正規表達式,我們這裡想要捕獲所有的日志并将它們發送給 Elasticsearch,是以需要配置成
。**
- id:目标的一個唯一辨別符。
- type:支援的輸出插件辨別符,我們這裡要輸出到 Elasticsearch,是以配置成 elasticsearch,這是 Fluentd 的一個内置插件。
- log_level:指定要捕獲的日志級别,我們這裡配置成
,表示任何該級别或者該級别以上(INFO、WARNING、ERROR)的日志都将被路由到 Elsasticsearch。info
- host/port:定義 Elasticsearch 的位址,也可以配置認證資訊,我們的 Elasticsearch 不需要認證,是以這裡直接指定 host 和 port 即可。
- logstash_format:Elasticsearch 服務對日志資料建構反向索引進行搜尋,将 logstash_format 設定為
,Fluentd 将會以 logstash 格式來轉發結構化的日志資料。true
- Buffer: Fluentd 允許在目标不可用時進行緩存,比如,如果網絡出現故障或者 Elasticsearch 不可用的時候。緩沖區配置也有助于降低磁盤的 IO
要收集 Kubernetes 叢集的日志,直接用 DasemonSet 控制器來部署 Fluentd 應用,這樣,它就可以從 Kubernetes 節點上采集日志,確定在叢集中的每個節點上始終運作一個 Fluentd 容器。
首先,通過 ConfigMap 對象來指定 Fluentd 配置檔案,建立 fluentd-configmap.yaml 檔案。
# cat fluentd-configmap.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: fluentd-configmap.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
kind: ConfigMap
apiVersion: v1
metadata:
name: fluentd-config
namespace: assembly
labels:
addonmanager.kubernetes.io/mode: Reconcile
data:
system.conf: |-
<system>
root_dir /tmp/fluentd-buffers/
</system>
containers.input.conf: |-
<source>
@id fluentd-containers.log
@type tail
path /var/log/containers/*.log
pos_file /var/log/es-containers.log.pos
time_format %Y-%m-%dT%H:%M:%S.%NZ
localtime
tag raw.kubernetes.*
format json
read_from_head true
</source>
# Detect exceptions in the log output and forward them as one log entry.
<match raw.kubernetes.**>
@id raw.kubernetes
@type detect_exceptions
remove_tag_prefix raw
message log
stream stream
multiline_flush_interval 5
max_bytes 500000
max_lines 1000
</match>
system.input.conf: |-
# Logs from systemd-journal for interesting services.
<source>
@id journald-docker
@type systemd
filters [{ "_SYSTEMD_UNIT": "docker.service" }]
<storage>
@type local
persistent true
</storage>
read_from_head true
tag docker
</source>
<source>
@id journald-kubelet
@type systemd
filters [{ "_SYSTEMD_UNIT": "kubelet.service" }]
<storage>
@type local
persistent true
</storage>
read_from_head true
tag kubelet
</source>
forward.input.conf: |-
# Takes the messages sent over TCP
<source>
@type forward
</source>
output.conf: |-
# Enriches records with Kubernetes metadata
<filter kubernetes.**>
@type kubernetes_metadata
</filter>
<match **>
@id elasticsearch
@type elasticsearch
@log_level info
include_tag_key true
host elasticsearch
port 9200
logstash_format true
request_timeout 30s
<buffer>
@type file
path /var/log/fluentd-buffers/kubernetes.system.buffer
flush_mode interval
retry_type exponential_backoff
flush_thread_count 2
flush_interval 5s
retry_forever
retry_max_interval 30
chunk_limit_size 2M
queue_limit_length 8
overflow_action block
</buffer>
</match>
# kubectl apply -f fluentd-configmap.yaml
configmap/fluentd-config created
上面配置檔案中配置了 docker 容器日志目錄以及 docker、kubelet 應用的日志的收集,收集到資料經過處理後發送到 elasticsearch:9200 服務。
然後建立一個 fluentd-daemonset.yaml 的檔案
# cat fluentd-daemonset.yaml
##########################################################################
#Author: zisefeizhu
#QQ: 2********0
#Date: 2020-03-13
#FileName: fluentd-daemonset.yaml
#URL: https://www.cnblogs.com/zisefeizhu/
#Description: The test script
#Copyright (C): 2020 All rights reserved
###########################################################################
apiVersion: v1
kind: ServiceAccount
metadata:
name: fluentd-es
namespace: assembly
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
- ""
resources:
- "namespaces"
- "pods"
verbs:
- "get"
- "watch"
- "list"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
name: fluentd-es
namespace: assembly
apiGroup: ""
roleRef:
kind: ClusterRole
name: fluentd-es
apiGroup: ""
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: fluentd-es
namespace: assembly
labels:
k8s-app: fluentd-es
version: v2.0.4
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
spec:
selector:
matchLabels:
k8s-app: fluentd-es
version: v2.0.4
template:
metadata:
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
version: v2.0.4
# This annotation ensures that fluentd does not get evicted if the node
# supports critical pod annotation based priority scheme.
# Note that this does not guarantee admission on the nodes (#40573).
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ''
spec:
serviceAccountName: fluentd-es
imagePullSecrets:
- name: k8s-harbor-login
containers:
- name: fluentd-es
image: harbor.linux.com/efk/fluentd-elasticsearch:v2.0.4
env:
- name: FLUENTD_ARGS
value: --no-supervisor -q
resources:
limits:
memory: 500Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /data/docker/containers
readOnly: true
- name: config-volume
mountPath: /etc/fluent/config.d
nodeSelector:
beta.kubernetes.io/fluentd-ds-ready: "true"
terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers
- name: config-volume
configMap:
name: fluentd-config
nodeSelector: ## 設定node篩選器,在特定label的節點上啟動
fluentd: "true"
節點打标簽
# kubectl apply -f fluentd-daemonset.yaml
serviceaccount/fluentd-es created
clusterrole.rbac.authorization.k8s.io/fluentd-es created
clusterrolebinding.rbac.authorization.k8s.io/fluentd-es created
daemonset.apps/fluentd-es created
# kubectl label nodes 20.0.0.204 fluentd=true
node/20.0.0.204 labeled
# kubectl label nodes 20.0.0.205 fluentd=true
node/20.0.0.205 labeled
# kubectl label nodes 20.0.0.206 fluentd=true
node/20.0.0.206 labeled
# kubectl get pods -n assembly -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
es-cluster-0 1/1 Running 0 30m 172.20.46.85 20.0.0.204 <none> <none>
fluentd-es-5fgt7 1/1 Running 0 5m36s 172.20.46.87 20.0.0.204 <none> <none>
fluentd-es-l22nj 1/1 Running 0 5m22s 172.20.145.9 20.0.0.205 <none> <none>
fluentd-es-pnqk8 1/1 Running 0 5m18s 172.20.208.29 20.0.0.206 <none> <none>
kibana-598987f498-k8ff9 1/1 Running 0 23m 172.20.46.86 20.0.0.204 <none> <none>
rbd-provisioner-9cf46c856-6qzll 1/1 Running 0 65m 172.20.46.84 20.0.0.204 <none> <none>
前面 Fluentd 配置檔案中我們采集的日志使用的是 logstash 格式,這裡隻需要在文本框中輸入
logstash-*
即可比對到 Elasticsearch pod中的所有日志資料,然後點選下一步,進入以下頁面:
在該頁面中配置使用哪個字段按時間過濾日志資料,在下拉清單中,選擇
@timestamp
字段,然後點選
Create index pattern
,建立完成後,點選左側導航菜單中的
Discover
,然後就可以看到一些直方圖和最近采集到的日志資料了
至此完成了efk的部署
啟動池
# ceph osd pool application enable assembly rbd
enabled application 'rbd' on pool 'assembly'
過手如登山,一步一重天