目錄
第1題:連續的子數組和
第2題:連續數組
第3題:相交連結清單
第4題:目标和
第5題:最後一塊石頭的重量 II
第6題:構造矩形
第7題:零錢兌換 II
第8題:完全平方數
第9題:不同路徑 II
第10題:石子遊戲
力扣(LeetCode)定期刷題,每期10道題,業務繁重的同志可以看看我分享的思路,不是最高效解決方案,隻求互相提升。
試題要求如下:

struct HashTable {
int key, val;
UT_hash_handle hh;
};
bool checkSubarraySum(int* nums, int numsSize, int k) {
int m = numsSize;
if (m < 2) {
return false;
}
struct HashTable* hashTable = NULL;
struct HashTable* tmp = malloc(sizeof(struct HashTable));
tmp->key = 0, tmp->val = -1;
HASH_ADD_INT(hashTable, key, tmp);
int remainder = 0;
for (int i = 0; i < m; i++) {
remainder = (remainder + nums[i]) % k;
HASH_FIND_INT(hashTable, &remainder, tmp);
if (tmp != NULL) {
int prevIndex = tmp->val;
if (i - prevIndex >= 2) {
return true;
}
} else {
tmp = malloc(sizeof(struct HashTable));
tmp->key = remainder, tmp->val = i;
HASH_ADD_INT(hashTable, key, tmp);
}
}
return false;
}
運作效率如下所示:
#include <stdio.h>
int findMaxLength(int* nums, int numsSize){
int *hash = (int *)malloc(sizeof(int) * (numsSize * 2 + 1));
for (int i = 0; i < (numsSize * 2 + 1); i++) {
hash[i] = -2;
}
int maxlen = 0;
int count = 0;
hash[numsSize] = -1;
for (int i = 0; i < numsSize; i++) {
count += nums[i] == 0 ? -1 : 1;
if (hash[count + numsSize] != -2) {
maxlen = fmax(maxlen, i - hash[count+numsSize]);
} else {
hash[count + numsSize] = i;
}
}
free(hash);
return maxlen;
}
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {
struct ListNode *p=headA, *q=headB;
while(p!=q&&(p!=NULL||q!=NULL))
{
if(p==NULL)
p=headB;
else
p=p->next;
if(q==NULL)
q=headA;
else
q=q->next;
}
return p;
}
int findTargetSumWays(int* nums, int numsSize, int target){
int sum = 0;
for (int i = 0; i < numsSize; i++) {
sum += nums[i];
}
if ((sum + target) % 2 != 0) {
return 0;
}
int targetA = (sum + target) / 2;
int *dp = (int *)malloc(sizeof(int) * (targetA + 1));
memset(dp, 0, sizeof(int) * (targetA + 1));
dp[0] = 1;
for (int i = 0; i < numsSize; i++) {
for (int j = targetA; j >= nums[i]; j--) {
dp[j] = dp[j] + dp[j - nums[i]];
}
}
return dp[targetA];
}
int lastStoneWeightII(int* stones, int stonesSize) {
int sum = 0;
for (int i = 0; i < stonesSize; i++) {
sum += stones[i];
}
int n = stonesSize, m = sum / 2;
int dp[n + 1][m + 1];
memset(dp, 0, sizeof(dp));
dp[0][0] = true;
for (int i = 0; i < n; ++i) {
for (int j = 0; j <= m; ++j) {
if (j < stones[i]) {
dp[i + 1][j] = dp[i][j];
} else {
dp[i + 1][j] = dp[i][j] || dp[i][j - stones[i]];
}
}
}
for (int j = m;; --j) {
if (dp[n][j]) {
return sum - 2 * j;
}
}
}
解題思路:
這道題主要的難點是要找到兩個相近且相乘為面積的長和寬,是以用開平方求得最中間的數,然後依次遞減,找到可以被整除的數,即可。
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* constructRectangle(int area, int* returnSize){
*returnSize=2;
int *a = (int *)malloc(sizeof(int)*2);
int b = (int)sqrt(area);
while(area % b !=0){
b--;
}
a[1]=b;
a[0]=area/b;
return a;
}
int change(int amount, int* coins, int coinsSize) {
int dp[amount + 1];
memset(dp, 0, sizeof(dp));
dp[0] = 1;
for (int i = 0; i < coinsSize; i++) {
for (int j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
int numSquares(int n) {
int f[n + 1];
f[0] = 0;
for (int i = 1; i <= n; i++) {
int minn = INT_MAX;
for (int j = 1; j * j <= i; j++) {
minn = fmin(minn, f[i - j * j]);
}
f[i] = minn + 1;
}
return f[n];
}
int uniquePathsWithObstacles(int** obstacleGrid, int obstacleGridSize, int* obstacleGridColSize) {
/* 1、dp數組含義:從(0, 0)到目前行的第j列的路徑數 */
int dp[*obstacleGridColSize];
/* 2、狀态轉移方程:
* if (obstacleGrid[i][j] == 1) {
* dp[j] = 0;
* } else {
* dp[j] += dp[j - 1];
* }
*/
/* 3、dp初值
* 第一行目前列路障之前均為1,路障之後均為0
*/
if (obstacleGrid[0][0] == 1) {
dp[0] = 0;
} else {
dp[0] = 1;
}
for (int j = 1; j < *obstacleGridColSize; j++) {
if (obstacleGrid[0][j] == 1) {
dp[j] = 0;
} else {
dp[j] = dp[j - 1];
}
}
/* 4、周遊順序:從左到右一層一層周遊 */
for (int i = 1; i < obstacleGridSize; i++) {
for (int j = 0; j < *obstacleGridColSize; j++) {
if (j == 0) { /* 開頭 */
if (obstacleGrid[i][j] == 1) {
/* 目前路徑上有路障:dp為0 */
dp[j] = 0;
} else {
/* 目前路徑上沒有路障:跳過 */
continue;
}
} else { /* 非開頭 */
if (obstacleGrid[i][j] == 1) {
/* 目前路徑上有路障:dp為0 */
dp[j] = 0;
} else {
/* 目前路徑上沒有路障:計算路徑數 */
dp[j] += dp[j - 1];
}
}
}
}
return dp[*obstacleGridColSize - 1];
}
bool stoneGame(int* piles, int pilesSize) {
int dp[pilesSize][pilesSize];
for (int i = 0; i < pilesSize; i++) {
dp[i][i] = piles[i];
}
for (int i = pilesSize - 2; i >= 0; i--) {
for (int j = i + 1; j < pilesSize; j++) {
dp[i][j] = fmax(piles[i] - dp[i + 1][j], piles[j] - dp[i][j - 1]);
}
}
return dp[0][pilesSize - 1] > 0;
}