/*****************************************************************************
* MarkerDetector.cpp
* Example_MarkerBasedAR
******************************************************************************
* by Khvedchenia Ievgen, 5th Dec 2012
* http://computer-vision-talks.com
******************************************************************************
* Ch2 of the book "Mastering OpenCV with Practical Computer Vision Projects"
* Copyright Packt Publishing 2012.
* http://www.packtpub.com/cool-projects-with-opencv/book
*****************************************************************************/
// Standard includes:
#include <iostream>
#include <sstream>
// File includes:
#include "MarkerDetector.hpp"
#include "Marker.hpp"
#include "TinyLA.hpp"
#include "DebugHelpers.hpp"
MarkerDetector::MarkerDetector(CameraCalibration calibration)
: m_minContourLengthAllowed(100)
, markerSize(100,100)
{
cv::Mat(3,3, CV_32F, const_cast<float*>(&calibration.getIntrinsic().data[0])).copyTo(camMatrix);//相機的内參數
cv::Mat(4,1, CV_32F, const_cast<float*>(&calibration.getDistorsion().data[0])).copyTo(distCoeff);//相機的畸變參數
bool centerOrigin = true;
if (centerOrigin)//坐标軸是否在标記的中心
{
m_markerCorners3d.push_back(cv::Point3f(-0.5f,-0.5f,0));
m_markerCorners3d.push_back(cv::Point3f(+0.5f,-0.5f,0));
m_markerCorners3d.push_back(cv::Point3f(+0.5f,+0.5f,0));
m_markerCorners3d.push_back(cv::Point3f(-0.5f,+0.5f,0));
}
else
{
m_markerCorners3d.push_back(cv::Point3f(0,0,0));
m_markerCorners3d.push_back(cv::Point3f(1,0,0));
m_markerCorners3d.push_back(cv::Point3f(1,1,0));
m_markerCorners3d.push_back(cv::Point3f(0,1,0));
}
m_markerCorners2d.push_back(cv::Point2f(0,0));
m_markerCorners2d.push_back(cv::Point2f(markerSize.width-1,0));
m_markerCorners2d.push_back(cv::Point2f(markerSize.width-1,markerSize.height-1));
m_markerCorners2d.push_back(cv::Point2f(0,markerSize.height-1));
}
void MarkerDetector::processFrame(const BGRAVideoFrame& frame)
{
std::vector<Marker> markers;
findMarkers(frame, markers);//☆★
m_transformations.clear();
for (size_t i=0; i<markers.size(); i++)
{
m_transformations.push_back(markers[i].transformation);
}
}
//可以通過該對象取得旋轉矩陣和平移向量
const std::vector<Transformation>& MarkerDetector::getTransformations() const
{
return m_transformations;
}
bool MarkerDetector::findMarkers(const BGRAVideoFrame& frame, std::vector<Marker>& detectedMarkers)
{
cv::Mat bgraMat(frame.height, frame.width, CV_8UC4, frame.data, frame.stride);
// BGRA=>gray
prepareImage(bgraMat, m_grayscaleImage);
// 二值化
performThreshold(m_grayscaleImage, m_thresholdImg);
// 輪廓檢測
findContours(m_thresholdImg, m_contours, m_grayscaleImage.cols / 5);
// 尋找具有四個角點的近似輪廓
findCandidates(m_contours, detectedMarkers);
// 檢測它們是否是指定的标記
recognizeMarkers(m_grayscaleImage, detectedMarkers);
// 标記的姿态估計
estimatePosition(detectedMarkers);
//根據id進行排序
std::sort(detectedMarkers.begin(), detectedMarkers.end());
return false;
}
void MarkerDetector::prepareImage(const cv::Mat& bgraMat, cv::Mat& grayscale) const
{
// Convert to grayscale
cv::cvtColor(bgraMat, grayscale, CV_BGRA2GRAY);
}
void MarkerDetector::performThreshold(const cv::Mat& grayscale, cv::Mat& thresholdImg) const
{
cv::threshold(grayscale, thresholdImg, 127, 255, cv::THRESH_BINARY_INV);
// cv::adaptiveThreshold(grayscale, // Input image
// thresholdImg, // Result binary image
// 255,
// cv::ADAPTIVE_THRESH_GAUSSIAN_C,
// cv::THRESH_BINARY_INV,
// 7,
// 7
// );
#ifdef SHOW_DEBUG_IMAGES
cv::showAndSave("Threshold image", thresholdImg);
#endif
}
void MarkerDetector::findContours(cv::Mat& thresholdImg, ContoursVector& contours, int minContourPointsAllowed) const
{
// 使用自定義的輪廓數組類型來臨時儲存檢測出的輪廓
ContoursVector allContours;
// 輸入圖像image必須為一個2值單通道圖像
// 檢測的輪廓數組,每一個輪廓用一個point類型的vector表示
// 輪廓的檢索模式
// CV_RETR_EXTERNAL表示隻檢測外輪廓
// CV_RETR_LIST檢測的輪廓不建立等級關系
// CV_RETR_CCOMP建立兩個等級的輪廓,上面的一層為外邊界,裡面的一層為内孔的邊界資訊。如果内孔内還有一個連通物體,這個物體的邊界也在頂層。
// CV_RETR_TREE建立一個等級樹結構的輪廓。具體參考contours.c這個demo
// 輪廓的近似辦法
// CV_CHAIN_APPROX_NONE存儲所有的輪廓點,相鄰的兩個點的像素位置差不超過1,即max(abs(x1-x2),abs(y2-y1))==1
// CV_CHAIN_APPROX_SIMPLE壓縮水準方向,垂直方向,對角線方向的元素,隻保留該方向的終點坐标,例如一個矩形輪廓隻需4個點來儲存輪廓資訊
// CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
// offset表示代表輪廓點的偏移量,可以設定為任意值。對ROI圖像中找出的輪廓,并要在整個圖像中進行分析時,這個參數還是很有用的。
cv::findContours(thresholdImg, allContours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
// 最終儲存輪廓的結構,清空上一次儲存的結果
contours.clear();
// 提煉上一步得到的輪廓,隻有當輪廓面積大于一定門檻值時才有儲存的價值
for (size_t i=0; i<allContours.size(); i++)
{
int contourSize = allContours[i].size();
if (contourSize > minContourPointsAllowed)// 大于圖像寬度的五分之一
{
contours.push_back(allContours[i]);
}
}
#ifdef SHOW_DEBUG_IMAGES
{
cv::Mat contoursImage(thresholdImg.size(), CV_8UC1);
contoursImage = cv::Scalar(0);
cv::drawContours(contoursImage, contours, -1, cv::Scalar(255), 2, CV_AA);
cv::showAndSave("Contours", contoursImage);
}
#endif
}
void MarkerDetector::findCandidates
(
const ContoursVector& contours,
std::vector<Marker>& detectedMarkers
)
{
std::vector<cv::Point> approxCurve;
std::vector<Marker> possibleMarkers;
// For each contour, analyze if it is a parallelepiped likely to be the marker
for (size_t i=0; i<contours.size(); i++)
{
// 判斷是否是多邊形的誤差限
double eps = contours[i].size() * 0.05;
// 對輪廓曲線進行平滑操作,得到一個在誤差限定下的近似多邊形
cv::approxPolyDP(contours[i], approxCurve, eps, true);
// 僅僅考慮四邊形
if (approxCurve.size() != 4)
continue;
// 而且多邊形必須是凸面的
if (!cv::isContourConvex(approxCurve))
continue;
// 確定相鄰兩點之間的距離足夠大:大到是一條邊,而不是短線段
float minDist = std::numeric_limits<float>::max();
for (int i = 0; i < 4; i++)
{
cv::Point side = approxCurve[i] - approxCurve[(i+1)%4]; // Point(dx, dy)
float squaredSideLength = side.dot(side); // dx*dx+dy*dy
minDist = std::min(minDist, squaredSideLength);
}
if (minDist < m_minContourLengthAllowed) // 100
continue;
// 通過上述檢查之後,就儲存候選的标記:
Marker m;
for (int i = 0; i<4; i++)
m.points.push_back( cv::Point2f(approxCurve[i].x, approxCurve[i].y) );
// 調整四個點的方向,確定它們是呈逆時針方向的
// 将第一點分别和第二點和第三點連接配接成直線
// 如果第三個點在右側,那麼這些點就是預設的逆時針方向
cv::Point v1 = m.points[1] - m.points[0];
cv::Point v2 = m.points[2] - m.points[0];
// (-1)*(v1.y/v1.x)-(-1)*(v2.y/v2.x):根據直線的斜率大小,來判斷第三個點的位置
double o = (v1.x * v2.y) - (v1.y * v2.x);
if (o < 0.0)
//如果第三個點在左側,那麼就交換第二個點和第四個點的位置,來調整它們成逆時針方向
std::swap(m.points[1], m.points[3]);
possibleMarkers.push_back(m);
}
// 檢測兩個marker是否互相過于接近
std::vector< std::pair<int,int> > tooNearCandidates;
for (size_t i=0;i<possibleMarkers.size();i++)
{
const Marker& m1 = possibleMarkers[i];
// 計算本标記到其他标記最近角點的平均距離
// calculate the average distance of each corner to the nearest corner of the other marker candidate
for (size_t j=i+1;j<possibleMarkers.size();j++)
{
const Marker& m2 = possibleMarkers[j];
float distSquared = 0;
for (int c = 0; c < 4; c++)
{
cv::Point v = m1.points[c] - m2.points[c];
distSquared += v.dot(v);
}
// 取相應四個角點距離平方和的平均值
distSquared /= 4;
// 如果距離太近,則把它們一起加入移除隊列,以做進一步的檢查(檢查其周長大小)
if (distSquared < 100)
{
tooNearCandidates.push_back(std::pair<int,int>(i,j));
}
}
}
// 标記需要移除的周長較小的标記
std::vector<bool> removalMask (possibleMarkers.size(), false);
for (size_t i=0; i<tooNearCandidates.size(); i++)
{
float p1 = perimeter(possibleMarkers[tooNearCandidates[i].first ].points);
float p2 = perimeter(possibleMarkers[tooNearCandidates[i].second].points);
size_t removalIndex;
if (p1 > p2)
removalIndex = tooNearCandidates[i].second;
else
removalIndex = tooNearCandidates[i].first;
removalMask[removalIndex] = true;
}
// 傳回經過提煉的候選标記隊列
detectedMarkers.clear();
for (size_t i=0;i<possibleMarkers.size();i++)
{
if (!removalMask[i])
detectedMarkers.push_back(possibleMarkers[i]);
}
}
void MarkerDetector::recognizeMarkers(const cv::Mat& grayscale, std::vector<Marker>& detectedMarkers)
{
std::vector<Marker> goodMarkers;
// Identify the markers
for (size_t i=0;i<detectedMarkers.size();i++)
{
Marker& marker = detectedMarkers[i];
// 通過變換的角點坐标,計算得到透視矩陣
cv::Mat markerTransform = cv::getPerspectiveTransform(marker.points, m_markerCorners2d);
// 通過透視變換将檢測到的标記轉換成正視圖矩形
cv::warpPerspective(grayscale, canonicalMarkerImage, markerTransform, markerSize);
#ifdef SHOW_DEBUG_IMAGES
{
cv::Mat markerImage = grayscale.clone();
marker.drawContour(markerImage);
cv::Mat markerSubImage = markerImage(cv::boundingRect(marker.points));
cv::showAndSave("Source marker" + ToString(i), markerSubImage);
cv::showAndSave("Marker " + ToString(i) + " after warp", canonicalMarkerImage);
}
#endif
int nRotations;
// 檢測候選的标記是哪一種旋轉的标記,傳回值是id
int id = Marker::getMarkerId(canonicalMarkerImage, nRotations);
if (id !=- 1)
{
marker.id = id;
// 根據相機的旋轉對标記的四個點進行排序(旋轉),這樣它們就總保持一個順序,與相機的方向無關了
std::rotate(marker.points.begin(), marker.points.begin() + 4 - nRotations, marker.points.end());
goodMarkers.push_back(marker);
}
}
// 通過亞像素精度來提取更精确的标記角點
if (goodMarkers.size() > 0)
{
std::vector<cv::Point2f> preciseCorners(4 * goodMarkers.size());
for (size_t i=0; i<goodMarkers.size(); i++)
{
const Marker& marker = goodMarkers[i];
for (int c = 0; c <4; c++)
{
preciseCorners[i*4 + c] = marker.points[c];
}
}
// 類型
/*
CV_TERMCRIT_ITER 用最大疊代次數作為終止條件
CV_TERMCRIT_EPS 用精度作為疊代條件
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS 用最大疊代次數或者精度作為疊代條件,決定于哪個條件先滿足
*/
// 疊代的最大次數
// 特定的門檻值
cv::TermCriteria termCriteria = cv::TermCriteria(cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS, 30, 0.01);
// 輸入圖像
// 輸入的角點,也作為輸出更精确的角點
// 領域的大小
// Sobel算子的大小
// 像素疊代(擴張)的方法
cv::cornerSubPix(grayscale, preciseCorners, cvSize(5,5), cvSize(-1,-1), termCriteria);
// 拷貝并儲存精确的标記角點
for (size_t i=0; i<goodMarkers.size(); i++)
{
Marker& marker = goodMarkers[i];
for (int c=0;c<4;c++)
{
marker.points[c] = preciseCorners[i*4 + c];
}
}
}
#if SHOW_DEBUG_IMAGES
{
cv::Mat markerCornersMat(grayscale.size(), grayscale.type());
markerCornersMat = cv::Scalar(0);
for (size_t i=0; i<goodMarkers.size(); i++)
{
goodMarkers[i].drawContour(markerCornersMat, cv::Scalar(255));
}
cv::showAndSave("Markers refined edges", grayscale * 0.5 + markerCornersMat);
}
#endif
detectedMarkers = goodMarkers;
}
// 标記的姿态估計
void MarkerDetector::estimatePosition(std::vector<Marker>& detectedMarkers)
{
for (size_t i=0; i<detectedMarkers.size(); i++)
{
Marker& m = detectedMarkers[i];
cv::Mat Rvec;
cv::Mat_<float> Tvec;
cv::Mat raux,taux;// 把點從模型坐标系轉到相機坐标系下的旋轉向量、平移向量:儲存歐幾裡得變換的結果
// 根據笛卡爾坐标系的3D坐标和标記的2D角點坐标,以及相機的内參數和畸變參數,求取相機相對于标記的歐幾裡得變換(剛體變換)
cv::solvePnP(m_markerCorners3d, m.points, camMatrix, distCoeff,raux,taux);
raux.convertTo(Rvec,CV_32F);
taux.convertTo(Tvec ,CV_32F);
cv::Mat_<float> rotMat(3,3);
cv::Rodrigues(Rvec, rotMat);// 将旋轉向量轉換成旋轉矩陣
// Copy to transformation matrix
for (int col=0; col<3; col++)
{
for (int row=0; row<3; row++)
{
m.transformation.r().mat[row][col] = rotMat(row,col); // Copy rotation component
}
m.transformation.t().data[col] = Tvec(col); // Copy translation component
}
// 之前求取的是相機相對于标記的歐幾裡得變換(剛體變換),可是結果我們是要求标記相對于相機的變換,是以僅需要對該變換求逆即可
m.transformation = m.transformation.getInverted();
}
}