天天看點

TF之LSTM:基于Tensorflow架構采用PTB資料集建立LSTM網絡的自然語言模組化

關于PTB資料集

PTB (Penn Treebank Dataset)文本資料集是語言模型學習中目前最被廣泛使用資料集。

ptb.test.txt    #測試集資料檔案

ptb.train.txt   #訓練集資料檔案

ptb.valid.txt   #驗證集資料檔案

這三個資料檔案中的資料已經經過了預處理,包含了10000 個不同的詞語和語句結束标記符(在文本中就是換行符)以及标記稀有詞語的特殊符号。

為了讓使用PTB資料集更加友善,TensorFlow提供了兩個函數來幫助實作資料的預處理。首先,TensorFlow提供了ptb_raw_data函數來讀取PTB的原始資料,并将原始資料中的單詞轉化為單詞ID。

訓練資料中總共包含了929589 個單詞,而這些單詞被組成了一個非常長的序列。這個序列通過特殊的辨別符給出了每句話結束的位置。在這個資料集中,句子結束的辨別符ID為2。

資料集的下載下傳位址:TF的PTB資料集     (别的資料集不比對的話會出現錯誤)

代碼實作

  本代碼使用2層 LSTM 網絡,且每層有 200 個隐藏單元。在訓練中截斷的輸入序列長度為 32,且使用 Dropout 和梯度截斷等方法控制模型的過拟合與梯度爆炸等問題。當簡單地訓練 3 個 Epoch 後,測試複雜度(Perplexity)降低到了 210,如果多輪訓練會更低。

# -*- coding: utf-8 -*-

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import collections

import os

import sys

import tensorflow as tf

Py3 = sys.version_info[0] == 3

def _read_words(filename):

 with tf.gfile.GFile(filename, "r") as f:

   if Py3:

     return f.read().replace("\n", "<eos>").split()

   else:

     return f.read().decode("utf-8").replace("\n", "<eos>").split()

def _build_vocab(filename):

 data = _read_words(filename)

 counter = collections.Counter(data)

 count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

 words, _ = list(zip(*count_pairs))

 word_to_id = dict(zip(words, range(len(words))))

 return word_to_id

def _file_to_word_ids(filename, word_to_id):

 return [word_to_id[word] for word in data if word in word_to_id]

def ptb_raw_data(data_path=None):

 """Load PTB raw data from data directory "data_path".

 Reads PTB text files, converts strings to integer ids,

 and performs mini-batching of the inputs.

 The PTB dataset comes from Tomas Mikolov's webpage:

http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

 Args:

   data_path: string path to the directory where simple-examples.tgz has

     been extracted.

 Returns:

   tuple (train_data, valid_data, test_data, vocabulary)

   where each of the data objects can be passed to PTBIterator.

 """

 train_path = os.path.join(data_path, "ptb.train.txt")

 valid_path = os.path.join(data_path, "ptb.valid.txt")

 test_path = os.path.join(data_path, "ptb.test.txt")

 word_to_id = _build_vocab(train_path)

 train_data = _file_to_word_ids(train_path, word_to_id)

 valid_data = _file_to_word_ids(valid_path, word_to_id)

 test_data = _file_to_word_ids(test_path, word_to_id)

 vocabulary = len(word_to_id)

 return train_data, valid_data, test_data, vocabulary

def ptb_producer(raw_data, batch_size, num_steps, name=None):

 """Iterate on the raw PTB data.

 This chunks up raw_data into batches of examples and returns Tensors that

 are drawn from these batches.

 Args:

   raw_data: one of the raw data outputs from ptb_raw_data.

   batch_size: int, the batch size.

   num_steps: int, the number of unrolls.

   name: the name of this operation (optional).

   A pair of Tensors, each shaped [batch_size, num_steps]. The second element

   of the tuple is the same data time-shifted to the right by one.

 Raises:

   tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.

 with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):

   raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

   data_len = tf.size(raw_data)

   batch_len = data_len // batch_size

   data = tf.reshape(raw_data[0 : batch_size * batch_len],

                     [batch_size, batch_len])

   epoch_size = (batch_len - 1) // num_steps

   assertion = tf.assert_positive(

       epoch_size,

       message="epoch_size == 0, decrease batch_size or num_steps")

   with tf.control_dependencies([assertion]):

     epoch_size = tf.identity(epoch_size, name="epoch_size")

   i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

   x = tf.strided_slice(data, [0, i * num_steps],

                        [batch_size, (i + 1) * num_steps])

   x.set_shape([batch_size, num_steps])

   y = tf.strided_slice(data, [0, i * num_steps + 1],

                        [batch_size, (i + 1) * num_steps + 1])

   y.set_shape([batch_size, num_steps])

   return x, y

from reader import *

import numpy as np

data_path = 'F:/File_Python/Python_daydayup/data/simple-examples/data'  #F:/File_Python/Python_daydayup/data/simple-examples/data

# 隐藏層單元數與LSTM層級數

hidden_size = 200

num_layers = 2

#詞典規模

vocab_size = 10000

learning_rate = 1.0

train_batch_size = 16

# 訓練資料截斷長度

train_num_step = 32

# 在測試時不需要使用截斷,測試資料為一個超長序列

eval_batch_size = 1

eval_num_step = 1

num_epoch = 3

#結點不被Dropout的機率

keep_prob = 0.5

# 用于控制梯度爆炸的參數

max_grad_norm = 5

# 通過ptbmodel 的類描述模型

class PTBModel(object):

   def __init__(self, is_training, batch_size, num_steps):

       # 記錄使用的Batch大小和截斷長度

       self.batch_size = batch_size

       self.num_steps = num_steps

       # 定義輸入層,次元為批量大小×截斷長度

       self.input_data = tf.placeholder(tf.int32, [batch_size, num_steps])

       # 定義預期輸出

       self.targets = tf.placeholder(tf.int32, [batch_size, num_steps])

       # 定義使用LSTM結構為循環體,帶Dropout的深度RNN

       lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_size)

       if is_training:

           lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)

       cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)

       # 初始化狀态為0

       self.initial_state = cell.zero_state(batch_size, tf.float32)

       # 将單詞ID轉換為單詞向量,embedding的次元為vocab_size*hidden_size

       embedding = tf.get_variable('embedding', [vocab_size, hidden_size])

       # 将一個批量内的單詞ID轉化為詞向量,轉化後的輸入次元為批量大小×截斷長度×隐藏單元數

       inputs = tf.nn.embedding_lookup(embedding, self.input_data)

       # 隻在訓練時使用Dropout

       if is_training: inputs = tf.nn.dropout(inputs, keep_prob)

       # 定義輸出清單,這裡先将不同時刻LSTM的輸出收集起來,再通過全連接配接層得到最終輸出

       outputs = []

       # state 儲存不同批量中LSTM的狀态,初始為0

       state = self.initial_state

       with tf.variable_scope('RNN'):

           for time_step in range(num_steps):

               if time_step > 0: tf.get_variable_scope().reuse_variables()

               # 從輸入資料擷取目前時間步的輸入與前一時間步的狀态,并傳入LSTM結構

               cell_output, state = cell(inputs[:, time_step, :], state)

               # 将目前輸出加入輸出隊列

               outputs.append(cell_output)

       # 将輸出隊列展開成[batch,hidden*num_step]的形狀,再reshape為[batch*num_step, hidden]

       output = tf.reshape(tf.concat(outputs, 1), [-1, hidden_size])

       # 将LSTM的輸出傳入全連接配接層以生成最後的預測結果。最後結果在每時刻上都是長度為vocab_size的張量

       # 且經過softmax層後表示下一個位置不同詞的機率

       weight = tf.get_variable('weight', [hidden_size, vocab_size])

       bias = tf.get_variable('bias', [vocab_size])

       logits = tf.matmul(output, weight) + bias

       # 定義交叉熵損失函數,一個序列的交叉熵之和

       loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(

           [logits],  # 預測的結果

           [tf.reshape(self.targets, [-1])],  # 期望正确的結果,這裡将[batch_size, num_steps]壓縮為一維張量

           [tf.ones([batch_size * num_steps], dtype=tf.float32)])  # 損失的權重,所有為1表明不同批量和時刻的重要程度一樣

       # 計算每個批量的平均損失

       self.cost = tf.reduce_sum(loss) / batch_size

       self.final_state = state

       # 隻在訓練模型時定義反向傳播操作

       if not is_training: return

       trainable_variable = tf.trainable_variables()

       # 控制梯度爆炸問題

       grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, trainable_variable), max_grad_norm)

       # 如果需要使用Adam作為優化器,可以改為tf.train.AdamOptimizer(learning_rate),學習率需要降低至0.001左右

       optimizer = tf.train.GradientDescentOptimizer(learning_rate)

       # 定義訓練步驟

       self.train_op = optimizer.apply_gradients(zip(grads, trainable_variable))

def run_epoch(session, model, data, train_op, output_log, epoch_size):

   total_costs = 0.0

   iters = 0

   state = session.run(model.initial_state)

   # # 使用目前資料訓練或測試模型

   for step in range(epoch_size):

       x, y = session.run(data)

       # 在目前批量上運作train_op并計算損失值,交叉熵計算的是下一個單詞為給定單詞的機率

       cost, state, _ = session.run([model.cost, model.final_state, train_op],

                                       {model.input_data: x, model.targets: y, model.initial_state: state})

       # 将不同時刻和批量的機率就可得到困惑度的對數形式,将這個和做指數運算就可得到困惑度

       total_costs += cost

       iters += model.num_steps

       # 隻在訓練時輸出日志

       if output_log and step % 100 == 0:

           print("After %d steps, perplexity is %.3f" % (step, np.exp(total_costs / iters)))

   return np.exp(total_costs / iters)

def main():

   train_data, valid_data, test_data, _ = ptb_raw_data(data_path)

   # 計算一個epoch需要訓練的次數

   train_data_len = len(train_data)

   train_batch_len = train_data_len // train_batch_size

   train_epoch_size = (train_batch_len - 1) // train_num_step

   valid_data_len = len(valid_data)

   valid_batch_len = valid_data_len // eval_batch_size

   valid_epoch_size = (valid_batch_len - 1) // eval_num_step

   test_data_len = len(test_data)

   test_batch_len = test_data_len // eval_batch_size

   test_epoch_size = (test_batch_len - 1) // eval_num_step

   initializer = tf.random_uniform_initializer(-0.05, 0.05)

   with tf.variable_scope("language_model", reuse=None, initializer=initializer):

       train_model = PTBModel(True, train_batch_size, train_num_step)

   with tf.variable_scope("language_model", reuse=True, initializer=initializer):

       eval_model = PTBModel(False, eval_batch_size, eval_num_step)

   # 訓練模型。

   with tf.Session() as session:

       tf.global_variables_initializer().run()

       train_queue = ptb_producer(train_data, train_model.batch_size, train_model.num_steps)

       eval_queue = ptb_producer(valid_data, eval_model.batch_size, eval_model.num_steps)

       test_queue = ptb_producer(test_data, eval_model.batch_size, eval_model.num_steps)

       coord = tf.train.Coordinator()

       threads = tf.train.start_queue_runners(sess=session, coord=coord)

       for i in range(num_epoch):

           print("In iteration: %d" % (i + 1))

           run_epoch(session, train_model, train_queue, train_model.train_op, True, train_epoch_size)

           valid_perplexity = run_epoch(session, eval_model, eval_queue, tf.no_op(), False, valid_epoch_size)

           print("Epoch: %d Validation Perplexity: %.3f" % (i + 1, valid_perplexity))

       test_perplexity = run_epoch(session, eval_model, test_queue, tf.no_op(), False, test_epoch_size)

       print("Test Perplexity: %.3f" % test_perplexity)

       coord.request_stop()

       coord.join(threads)

if __name__ == "__main__":

   main()