天天看點

Pandas進階教程之:category資料類型簡介建立categorycategories的操作category排序比較操作其他操作

簡介

Pandas中有一種特殊的資料類型叫做category。它表示的是一個類别,一般用在統計分類中,比如性别,血型,分類,級别等等。有點像java中的enum。

今天給大家詳細講解一下category的用法。

建立category

使用Series建立

在建立Series的同時添加dtype=”category”就可以建立好category了。category分為兩部分,一部分是order,一部分是字面量:

In [1]: s = pd.Series(["a", "b", "c", "a"], dtype="category")
In [2]: s
Out[2]: 
0    a
1    b
2    c
3    a
dtype: category
Categories (3, object): ['a', 'b', 'c']      

可以将DF中的Series轉換為category:

In [3]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]})
In [4]: df["B"] = df["A"].astype("category")
In [5]: df["B"]
Out[32]: 
0    a
1    b
2    c
3    a
Name: B, dtype: category
Categories (3, object): [a, b, c]      

可以建立好一個

pandas.Categorical

,将其作為參數傳遞給Series:

In [10]: raw_cat = pd.Categorical(
   ....:     ["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=False
   ....: )
   ....: 
In [11]: s = pd.Series(raw_cat)
In [12]: s
Out[12]: 
0    NaN
1      b
2      c
3    NaN
dtype: category
Categories (3, object): ['b', 'c', 'd']      

使用DF建立

建立DataFrame的時候,也可以傳入 dtype=”category”:

In [17]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")}, dtype="category")
In [18]: df.dtypes
Out[18]: 
A    category
B    category
dtype: object      

DF中的A和B都是一個category:

In [19]: df["A"]
Out[19]: 
0    a
1    b
2    c
3    a
Name: A, dtype: category
Categories (3, object): ['a', 'b', 'c']
In [20]: df["B"]
Out[20]: 
0    b
1    c
2    c
3    d
Name: B, dtype: category
Categories (3, object): ['b', 'c', 'd']      

或者使用df.astype(“category”)将DF中所有的Series轉換為category:

In [21]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})
In [22]: df_cat = df.astype("category")
In [23]: df_cat.dtypes
Out[23]: 
A    category
B    category
dtype: object      

建立控制

預設情況下傳入dtype=’category’ 建立出來的category使用的是預設值:

  1. Categories是從資料中推斷出來的。
  2. Categories是沒有大小順序的。

可以顯示建立CategoricalDtype來修改上面的兩個預設值:

In [26]: from pandas.api.types import CategoricalDtype
In [27]: s = pd.Series(["a", "b", "c", "a"])
In [28]: cat_type = CategoricalDtype(categories=["b", "c", "d"], ordered=True)
In [29]: s_cat = s.astype(cat_type)
In [30]: s_cat
Out[30]: 
0    NaN
1      b
2      c
3    NaN
dtype: category
Categories (3, object): ['b' < 'c' < 'd']      

同樣的CategoricalDtype還可以用在DF中:

In [31]: from pandas.api.types import CategoricalDtype
In [32]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})
In [33]: cat_type = CategoricalDtype(categories=list("abcd"), ordered=True)
In [34]: df_cat = df.astype(cat_type)
In [35]: df_cat["A"]
Out[35]: 
0    a
1    b
2    c
3    a
Name: A, dtype: category
Categories (4, object): ['a' < 'b' < 'c' < 'd']
In [36]: df_cat["B"]
Out[36]: 
0    b
1    c
2    c
3    d
Name: B, dtype: category
Categories (4, object): ['a' < 'b' < 'c' < 'd']      

轉換為原始類型

使用

Series.astype(original_dtype)

或者

np.asarray(categorical)

可以将Category轉換為原始類型:

In [39]: s = pd.Series(["a", "b", "c", "a"])
In [40]: s
Out[40]: 
0    a
1    b
2    c
3    a
dtype: object
In [41]: s2 = s.astype("category")
In [42]: s2
Out[42]: 
0    a
1    b
2    c
3    a
dtype: category
Categories (3, object): ['a', 'b', 'c']
In [43]: s2.astype(str)
Out[43]: 
0    a
1    b
2    c
3    a
dtype: object
In [44]: np.asarray(s2)
Out[44]: array(['a', 'b', 'c', 'a'], dtype=object)      

categories的操作

擷取category的屬性

Categorical資料有

categories

ordered

兩個屬性。可以通過

s.cat.categories

s.cat.ordered

來擷取:

In [57]: s = pd.Series(["a", "b", "c", "a"], dtype="category")
In [58]: s.cat.categories
Out[58]: Index(['a', 'b', 'c'], dtype='object')
In [59]: s.cat.ordered
Out[59]: False      

重排category的順序:

In [60]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"]))
In [61]: s.cat.categories
Out[61]: Index(['c', 'b', 'a'], dtype='object')
In [62]: s.cat.ordered
Out[62]: False      

重命名categories

通過給s.cat.categories指派可以重命名categories:

In [67]: s = pd.Series(["a", "b", "c", "a"], dtype="category")
In [68]: s
Out[68]: 
0    a
1    b
2    c
3    a
dtype: category
Categories (3, object): ['a', 'b', 'c']
In [69]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]
In [70]: s
Out[70]: 
0    Group a
1    Group b
2    Group c
3    Group a
dtype: category
Categories (3, object): ['Group a', 'Group b', 'Group c']      

使用rename_categories可以達到同樣的效果:

In [71]: s = s.cat.rename_categories([1, 2, 3])
In [72]: s
Out[72]: 
0    1
1    2
2    3
3    1
dtype: category
Categories (3, int64): [1, 2, 3]      

或者使用字典對象:

# You can also pass a dict-like object to map the renaming
In [73]: s = s.cat.rename_categories({1: "x", 2: "y", 3: "z"})
In [74]: s
Out[74]: 
0    x
1    y
2    z
3    x
dtype: category
Categories (3, object): ['x', 'y', 'z']      

使用add_categories添加category

可以使用add_categories來添加category:

In [77]: s = s.cat.add_categories([4])
In [78]: s.cat.categories
Out[78]: Index(['x', 'y', 'z', 4], dtype='object')
In [79]: s
Out[79]: 
0    x
1    y
2    z
3    x
dtype: category
Categories (4, object): ['x', 'y', 'z', 4]      

使用remove_categories删除category

In [80]: s = s.cat.remove_categories([4])
In [81]: s
Out[81]: 
0    x
1    y
2    z
3    x
dtype: category
Categories (3, object): ['x', 'y', 'z']      

删除未使用的cagtegory

In [82]: s = pd.Series(pd.Categorical(["a", "b", "a"], categories=["a", "b", "c", "d"]))
In [83]: s
Out[83]: 
0    a
1    b
2    a
dtype: category
Categories (4, object): ['a', 'b', 'c', 'd']
In [84]: s.cat.remove_unused_categories()
Out[84]: 
0    a
1    b
2    a
dtype: category
Categories (2, object): ['a', 'b']      

重置cagtegory

set_categories()

可以同時進行添加和删除category操作:

In [85]: s = pd.Series(["one", "two", "four", "-"], dtype="category")
In [86]: s
Out[86]: 
0     one
1     two
2    four
3       -
dtype: category
Categories (4, object): ['-', 'four', 'one', 'two']
In [87]: s = s.cat.set_categories(["one", "two", "three", "four"])
In [88]: s
Out[88]: 
0     one
1     two
2    four
3     NaN
dtype: category
Categories (4, object): ['one', 'two', 'three', 'four']      

category排序

如果category建立的時候帶有 ordered=True , 那麼可以對其進行排序操作:

In [91]: s = pd.Series(["a", "b", "c", "a"]).astype(CategoricalDtype(ordered=True))
In [92]: s.sort_values(inplace=True)
In [93]: s
Out[93]: 
0    a
3    a
1    b
2    c
dtype: category
Categories (3, object): ['a' < 'b' < 'c']
In [94]: s.min(), s.max()
Out[94]: ('a', 'c')      

可以使用 as_ordered() 或者 as_unordered() 來強制排序或者不排序:

In [95]: s.cat.as_ordered()
Out[95]: 
0    a
3    a
1    b
2    c
dtype: category
Categories (3, object): ['a' < 'b' < 'c']
In [96]: s.cat.as_unordered()
Out[96]: 
0    a
3    a
1    b
2    c
dtype: category
Categories (3, object): ['a', 'b', 'c']      

重排序

使用Categorical.reorder_categories() 可以對現有的category進行重排序:

In [103]: s = pd.Series([1, 2, 3, 1], dtype="category")
In [104]: s = s.cat.reorder_categories([2, 3, 1], ordered=True)
In [105]: s
Out[105]: 
0    1
1    2
2    3
3    1
dtype: category
Categories (3, int64): [2 < 3 < 1]      

多列排序

sort_values 支援多列進行排序:

In [109]: dfs = pd.DataFrame(
   .....:     {
   .....:         "A": pd.Categorical(
   .....:             list("bbeebbaa"),
   .....:             categories=["e", "a", "b"],
   .....:             ordered=True,
   .....:         ),
   .....:         "B": [1, 2, 1, 2, 2, 1, 2, 1],
   .....:     }
   .....: )
   .....: 
In [110]: dfs.sort_values(by=["A", "B"])
Out[110]: 
   A  B
2  e  1
3  e  2
7  a  1
6  a  2
0  b  1
5  b  1
1  b  2
4  b  2      

比較操作

如果建立的時候設定了orderedTrue ,那麼category之間就可以進行比較操作。支援

==

,

!=

>

>=

<

, 和

<=

這些操作符。

In [113]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [114]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [115]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True))      
In [119]: cat > cat_base
Out[119]: 
0     True
1    False
2    False
dtype: bool
In [120]: cat > 2
Out[120]: 
0     True
1    False
2    False
dtype: bool      

其他操作

Cagetory本質上來說還是一個Series,是以Series的操作category基本上都可以使用,比如: Series.min(), Series.max() 和 Series.mode()。

value_counts:

In [131]: s = pd.Series(pd.Categorical(["a", "b", "c", "c"], categories=["c", "a", "b", "d"]))
In [132]: s.value_counts()
Out[132]: 
c    2
a    1
b    1
d    0
dtype: int64      

DataFrame.sum():

In [133]: columns = pd.Categorical(
   .....:     ["One", "One", "Two"], categories=["One", "Two", "Three"], ordered=True
   .....: )
   .....: 
In [134]: df = pd.DataFrame(
   .....:     data=[[1, 2, 3], [4, 5, 6]],
   .....:     columns=pd.MultiIndex.from_arrays([["A", "B", "B"], columns]),
   .....: )
   .....: 
In [135]: df.sum(axis=1, level=1)
Out[135]: 
   One  Two  Three
0    3    3      0
1    9    6      0      

Groupby:

In [136]: cats = pd.Categorical(
   .....:     ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"]
   .....: )
   .....: 
In [137]: df = pd.DataFrame({"cats": cats, "values": [1, 2, 2, 2, 3, 4, 5]})
In [138]: df.groupby("cats").mean()
Out[138]: 
      values
cats        
a        1.0
b        2.0
c        4.0
d        NaN
In [139]: cats2 = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"])
In [140]: df2 = pd.DataFrame(
   .....:     {
   .....:         "cats": cats2,
   .....:         "B": ["c", "d", "c", "d"],
   .....:         "values": [1, 2, 3, 4],
   .....:     }
   .....: )
   .....: 
In [141]: df2.groupby(["cats", "B"]).mean()
Out[141]: 
        values
cats B        
a    c     1.0
     d     2.0
b    c     3.0
     d     4.0
c    c     NaN
     d     NaN      

Pivot tables:

In [142]: raw_cat = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"])
In [143]: df = pd.DataFrame({"A": raw_cat, "B": ["c", "d", "c", "d"], "values": [1, 2, 3, 4]})
In [144]: pd.pivot_table(df, values="values", index=["A", "B"])
Out[144]: 
     values
A B        
a c       1
  d       2
b c       3
  d       4      
本文已收錄于 http://www.flydean.com/08-python-pandas-category/

最通俗的解讀,最深刻的幹貨,最簡潔的教程,衆多你不知道的小技巧等你來發現!

歡迎關注我的公衆号:「程式那些事」,懂技術,更懂你!