描述
判斷是否序列 org 能唯一地由 seqs重構得出. org是一個由從1到n的正整數排列而成的序列,1≤n≤104。 重構表示組合成seqs的一個最短的父序列 (意思是,一個最短的序列使得所有 seqs裡的序列都是它的子序列).
判斷是否有且僅有一個能從 seqs重構出來的序列,并且這個序列是org。
線上評測位址:
領扣題庫官網樣例1
輸入:org = [1,2,3], seqs = [[1,2],[1,3]]
輸出: false
解釋:
[1,2,3] 并不是唯一可以被重構出的序列,還可以重構出 [1,3,2]
樣例2
輸入: org = [1,2,3], seqs = [[1,2]]
輸出: false
解釋:
能重構出的序列隻有 [1,2].
樣例3
輸入: org = [1,2,3], seqs = [[1,2],[1,3],[2,3]]
輸出: true
解釋:
序列 [1,2], [1,3], 和 [2,3] 可以唯一重構出 [1,2,3].
樣例4
輸入:org = [4,1,5,2,6,3], seqs = [[5,2,6,3],[4,1,5,2]]
輸出:true
題解
九章算法班裡講過的拓撲排序,隻要保證 queue 裡最多同時隻有一個元素即可。 是以這是 queue 用 list 然後每次 pop 也可以,反正隻有一個數。
class Solution:
"""
@param org: a permutation of the integers from 1 to n
@param seqs: a list of sequences
@return: true if it can be reconstructed only one or false
"""
def sequenceReconstruction(self, org, seqs):
graph = self.build_graph(seqs)
topo_order = self.topological_sort(graph)
return topo_order == org
def build_graph(self, seqs):
# initialize graph
graph = {}
for seq in seqs:
for node in seq:
if node not in graph:
graph[node] = set()
for seq in seqs:
for i in range(1, len(seq)):
graph[seq[i - 1]].add(seq[i])
return graph
def get_indegrees(self, graph):
indegrees = {
node: 0
for node in graph
}
for node in graph:
for neighbor in graph[node]:
indegrees[neighbor] += 1
return indegrees
def topological_sort(self, graph):
indegrees = self.get_indegrees(graph)
queue = []
for node in graph:
if indegrees[node] == 0:
queue.append(node)
topo_order = []
while queue:
if len(queue) > 1:
# there must exist more than one topo orders
return None
node = queue.pop()
topo_order.append(node)
for neighbor in graph[node]:
indegrees[neighbor] -= 1
if indegrees[neighbor] == 0:
queue.append(neighbor)
if len(topo_order) == len(graph):
return topo_order
return None
更多題解參考:
九章官網solution