判斷是否序列 org 能唯一地由 seqs重構得出. org是一個由從1到n的正整數排列而成的序列,1≤n≤10^4。 重構表示組合成seqs的一個最短的父序列 (意思是,一個最短的序列使得所有 seqs裡的序列都是它的子序列).
判斷是否有且僅有一個能從 seqs重構出來的序列,并且這個序列是org。
線上評測位址:
LintCode 領扣
樣例1:
輸入:org = [1,2,3], seqs = [[1,2],[1,3]]
輸出: false
解釋:
[1,2,3] 并不是唯一可以被重構出的序列,還可以重構出 [1,3,2]
樣例2:
輸入: org = [1,2,3], seqs = [[1,2]]
能重構出的序列隻有 [1,2].
樣例3:
輸入: org = [1,2,3], seqs = [[1,2],[1,3],[2,3]]
輸出: true
序列 [1,2], [1,3], 和 [2,3] 可以唯一重構出 [1,2,3].
樣例4:
輸入:org = [4,1,5,2,6,3], seqs = [[5,2,6,3],[4,1,5,2]]
輸出:true
【題解】
九章算法班裡講過的拓撲排序,隻要保證 queue 裡最多同時隻有一個元素即可。 是以這是 queue 用 list 然後每次 pop 也可以,反正隻有一個數。
public class Solution {
/**
* @param org: a permutation of the integers from 1 to n
* @param seqs: a list of sequences
* @return: true if it can be reconstructed only one or false
*/
public boolean sequenceReconstruction(int[] org, int[][] seqs) {
Map<Integer, Set<Integer>> graph = buildGraph(seqs);
List<Integer> topoOrder = getTopoOrder(graph);
if (topoOrder == null || topoOrder.size() != org.length) {
return false;
}
for (int i = 0; i < org.length; i++) {
if (org[i] != topoOrder.get(i)) {
return false;
}
}
return true;
}
private Map<Integer, Set<Integer>> buildGraph(int[][] seqs) {
Map<Integer, Set<Integer>> graph = new HashMap();
for (int[] seq : seqs) {
for (int i = 0; i < seq.length; i++) {
if (!graph.containsKey(seq[i])) {
graph.put(seq[i], new HashSet<Integer>());
}
}
}
for (int[] seq : seqs) {
for (int i = 1; i < seq.length; i++) {
graph.get(seq[i - 1]).add(seq[i]);
}
}
return graph;
}
private Map<Integer, Integer> getIndegrees(Map<Integer, Set<Integer>> graph) {
Map<Integer, Integer> indegrees = new HashMap();
for (Integer node : graph.keySet()) {
indegrees.put(node, 0);
}
for (Integer node : graph.keySet()) {
for (Integer neighbor : graph.get(node)) {
indegrees.put(neighbor, indegrees.get(neighbor) + 1);
}
}
return indegrees;
}
private List<Integer> getTopoOrder(Map<Integer, Set<Integer>> graph) {
Map<Integer, Integer> indegrees = getIndegrees(graph);
Queue<Integer> queue = new LinkedList();
List<Integer> topoOrder = new ArrayList();
for (Integer node : graph.keySet()) {
if (indegrees.get(node) == 0) {
queue.offer(node);
topoOrder.add(node);
}
}
while (!queue.isEmpty()) {
if (queue.size() > 1) {
return null;
}
Integer node = queue.poll();
for (Integer neighbor : graph.get(node)) {
indegrees.put(neighbor, indegrees.get(neighbor) - 1);
if (indegrees.get(neighbor) == 0) {
queue.offer(neighbor);
topoOrder.add(neighbor);
}
}
}
if (graph.size() == topoOrder.size()) {
return topoOrder;
}
return null;
}
}
更多題解參考:
九章算法 - 幫助更多中國人找到好工作,矽谷頂尖IT企業工程師實時線上授課為你傳授面試技巧