1.代碼在vscode和centos下均可成功執行
2.安裝好python3和pip3
3.安裝好依賴庫(pip3 install requests lxml baidu-aip requests)
4.在百度雲注冊登入賬号.開通人臉檢查服務(
https://cloud.baidu.com/product/face).必須在代碼中填寫appid和ak資訊
5.image目錄必須和代碼檔案在同一個目錄下
#!/usr/bin/python3
#coding: utf-8
import time
import os
import re
import requests
# shell pip install requests lxml baidu-aip
from lxml import etree
from aip import AipFace
#百度雲 人臉檢測 申請資訊
#唯一必須填的資訊就這三行
APP_ID = ""
API_KEY = ""
SECRET_KEY = ""
# 檔案存放目錄名,相對于目前目錄
DIR = "image"
# 過濾顔值門檻值,存儲空間大的請随意
BEAUTY_THRESHOLD = 45
#浏覽器中打開知乎,在開發者工具複制一個,無需登入
#如何替換該值下文有講述
AUTHORIZATION = "oauth c3cef7c66a1843f8b3a9e6a1e3160e20"
#以下皆無需改動
#每次請求知乎的讨論清單長度,不建議設定太長,注意節操
LIMIT = 5
#這是話題『美女』的 ID,其是『顔值』(20013528)的父話題
SOURCE = "19552207"
#爬蟲假裝下正常浏覽器請求
USER_AGENT = "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.55.3 (KHTML, like Gecko) Version/5.1.5 Safari/534.55.3"
#爬蟲假裝下正常浏覽器請求
REFERER = "https://www.zhihu.com/topic/%s/newest" % SOURCE
#某話題下讨論清單請求 url
BASE_URL = "https://www.zhihu.com/api/v4/topics/%s/feeds/timeline_activity"
#初始請求 url 附帶的請求參數
URL_QUERY = "?include=data%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.is_normal%2Ccomment_count%2Cvoteup_count%2Ccontent%2Crelevant_info%2Cexcerpt.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cvoteup_count%2Ccomment_count%2Cvoting%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Dpeople%29%5D.target.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dquestion%29%5D.target.comment_count&limit=" + str(LIMIT)
#指定 url,擷取對應原始内容 / 圖檔
def fetch_image(url):
try:
headers = {
"User-Agent": USER_AGENT,
"Referer": REFERER,
"authorization": AUTHORIZATION
}
s = requests.get(url, headers=headers)
except Exception as e:
print("fetch last activities fail. " + url)
raise e
return s.content
#指定 url,擷取對應 JSON 傳回 / 話題清單
def fetch_activities(url):
try:
headers = {
"User-Agent": USER_AGENT,
"Referer": REFERER,
"authorization": AUTHORIZATION
}
s = requests.get(url, headers=headers)
except Exception as e:
print("fetch last activities fail. " + url)
raise e
return s.json()
#處理傳回的話題清單
def process_activities(datums, face_detective):
for data in datums["data"]:
target = data["target"]
if "content" not in target or "question" not in target or "author" not in target:
continue
#解析清單中每一個元素的内容
html = etree.HTML(target["content"])
seq = 0
#question_url = target["question"]["url"]
question_title = target["question"]["title"]
author_name = target["author"]["name"]
#author_id = target["author"]["url_token"]
print("current answer: " + question_title + " author: " + author_name)
#擷取所有圖檔位址
images = html.xpath("//img/@src")
for image in images:
if not image.startswith("http"):
continue
s = fetch_image(image)
#請求人臉檢測服務
scores = face_detective(s)
for score in scores:
filename = ("%d--" % score) + author_name + "--" + question_title + ("--%d" % seq) + ".jpg"
filename = re.sub(r'(?u)[^-\w.]', '_', filename)
#注意檔案名的處理,不同平台的非法字元不一樣,這裡隻做了簡單處理,特别是 author_name / question_title 中的内容
seq = seq + 1
with open(os.path.join(DIR, filename), "wb") as fd:
fd.write(s)
#人臉檢測 免費,但有 QPS 限制
time.sleep(2)
if not datums["paging"]["is_end"]:
#擷取後續讨論清單的請求 url
return datums["paging"]["next"]
else:
return None
def get_valid_filename(s):
s = str(s).strip().replace(' ', '_')
return re.sub(r'(?u)[^-\w.]', '_', s)
import base64
def detect_face(image, token):
try:
URL = "https://aip.baidubce.com/rest/2.0/face/v3/detect"
params = {
"access_token": token
}
data = {
"face_field": "age,gender,beauty,qualities",
"image_type": "BASE64",
"image": base64.b64encode(image)
}
s = requests.post(URL, params=params, data=data)
return s.json()["result"]
except Exception as e:
print("detect face fail. " + url)
raise e
def fetch_auth_token(api_key, secret_key):
try:
URL = "https://aip.baidubce.com/oauth/2.0/token"
params = {
"grant_type": "client_credentials",
"client_id": api_key,
"client_secret": secret_key
}
s = requests.post(URL, params=params)
return s.json()["access_token"]
except Exception as e:
print("fetch baidu auth token fail. " + url)
raise e
def init_face_detective(app_id, api_key, secret_key):
# client = AipFace(app_id, api_key, secret_key)
# 百度雲 V3 版本接口,需要先擷取 access token
token = fetch_auth_token(api_key, secret_key)
def detective(image):
#r = client.detect(image, options)
# 直接使用 HTTP 請求
r = detect_face(image, token)
#如果沒有檢測到人臉
if r is None or r["face_num"] == 0:
return []
scores = []
for face in r["face_list"]:
#人臉置信度太低
if face["face_probability"] < 0.6:
continue
#顔值低于門檻值
if face["beauty"] < BEAUTY_THRESHOLD:
continue
#性别非女性
if face["gender"]["type"] != "female":
continue
scores.append(face["beauty"])
return scores
return detective
def init_env():
if not os.path.exists(DIR):
os.makedirs(DIR)
init_env()
face_detective = init_face_detective(APP_ID, API_KEY, SECRET_KEY)
url = BASE_URL % SOURCE + URL_QUERY
while url is not None:
print("current url: " + url)
datums = fetch_activities(url)
url = process_activities(datums, face_detective)
#注意節操,爬蟲休息間隔不要調小
time.sleep(5)
# vim: set ts=4 sw=4 sts=4 tw=100 et:
