标簽
PostgreSQL , cpu 并行 , smp 并行 , 并行計算 , gpu 并行 , 并行過程支援
https://github.com/digoal/blog/blob/master/201903/20190317_16.md#%E8%83%8C%E6%99%AF 背景
PostgreSQL 11 優化器已經支援了非常多場合的并行。簡單估計,已支援27餘種場景的并行計算。
parallel seq scan
parallel index scan
parallel index only scan
parallel bitmap scan
parallel filter
parallel hash agg
parallel group agg
parallel cte
parallel subquery
parallel create table
parallel create index
parallel select into
parallel CREATE MATERIALIZED VIEW
parallel 排序 : gather merge
parallel nestloop join
parallel hash join
parallel merge join
parallel 自定義并行聚合
parallel 自定義并行UDF
parallel append
parallel append merge
parallel union all
parallel fdw table scan
parallel partition join
parallel partition agg
parallel gather
parallel gather merge
parallel rc 并行
parallel rr 并行
parallel GPU 并行
parallel unlogged table
lead parallel
接下來進行一一介紹。
關鍵知識請先自行了解:
1、優化器自動并行度算法 CBO
《PostgreSQL 9.6 并行計算 優化器算法淺析》 《PostgreSQL 11 并行計算算法,參數,強制并行度設定》https://github.com/digoal/blog/blob/master/201903/20190317_16.md#parallel-union-all parallel union all
多段并行執行,或者多段并行執行并排序
parallel union all 實際上用到是parallel append優化method。
如果多段執行的結果需要排序,那麼優化器可以在每個段内傳回有序結果,可以使用歸并排序(類似merge sort, gather merge)(parallel append merge)。
《PostgreSQL 并行計算解說 之23 - parallel append merge》資料量:10億
場景 | 資料量 | 關閉并行 | 開啟并行 | 并行度 | 開啟并行性能提升倍數 |
---|---|---|---|---|---|
10億 | 99 秒 | 5.6 秒 | 24 | 17.68 倍 |
postgres=# show max_worker_processes ;
max_worker_processes
----------------------
128
(1 row)
postgres=# set min_parallel_table_scan_size =0;
postgres=# set min_parallel_index_scan_size =0;
postgres=# set parallel_tuple_cost =0;
postgres=# set parallel_setup_cost =0;
postgres=# set max_parallel_workers=128;
postgres=# set max_parallel_workers_per_gather =24;
postgres=# set enable_parallel_hash =on;
postgres=# set enable_parallel_append =on;
postgres=# set enable_partitionwise_aggregate =off;
postgres=# set work_mem ='128MB';
https://github.com/digoal/blog/blob/master/201903/20190317_16.md#1%E5%85%B3%E9%97%AD%E5%B9%B6%E8%A1%8C%E8%80%97%E6%97%B6-99-%E7%A7%92 1、關閉并行,耗時: 99 秒。
postgres=# set max_parallel_workers_per_gather =0;
postgres=# set enable_parallel_append =off;
explain select * from (
select * from ccc0 union all
select * from ccc1 union all
select * from ccc2 union all
select * from ccc3 union all
select * from ccc4 union all
select * from ccc5 union all
select * from ccc6 union all
select * from ccc7 union all
select * from ccc8 union all
select * from ccc9 union all
select * from ccc10 union all
select * from ccc11 union all
select * from ccc12 union all
select * from ccc13 union all
select * from ccc14 union all
select * from ccc15 union all
select * from ccc16 union all
select * from ccc17 union all
select * from ccc18 union all
select * from ccc19 union all
select * from ccc20 union all
select * from ccc21 union all
select * from ccc22 union all
select * from ccc23
) as t
order by order_id limit 10;
QUERY PLAN
------------------------------------------------------------------------------------
Limit (cost=42015064.65..42015064.67 rows=10 width=48)
-> Sort (cost=42015064.65..44515064.93 rows=1000000114 width=48)
Sort Key: ccc0.order_id
-> Append (cost=0.00..20405421.71 rows=1000000114 width=48)
-> Seq Scan on ccc0 (cost=0.00..641839.96 rows=41663296 width=48)
-> Seq Scan on ccc1 (cost=0.00..625842.88 rows=40624888 width=48)
-> Seq Scan on ccc2 (cost=0.00..722107.36 rows=46873636 width=48)
-> Seq Scan on ccc3 (cost=0.00..545575.32 rows=35414332 width=48)
-> Seq Scan on ccc4 (cost=0.00..657705.92 rows=42693192 width=48)
-> Seq Scan on ccc5 (cost=0.00..609836.16 rows=39585616 width=48)
-> Seq Scan on ccc6 (cost=0.00..625934.32 rows=40630732 width=48)
-> Seq Scan on ccc7 (cost=0.00..673876.80 rows=43742880 width=48)
-> Seq Scan on ccc8 (cost=0.00..601729.04 rows=39059604 width=48)
-> Seq Scan on ccc9 (cost=0.00..609919.96 rows=39591296 width=48)
-> Seq Scan on ccc10 (cost=0.00..674124.76 rows=43758976 width=48)
-> Seq Scan on ccc11 (cost=0.00..529544.24 rows=34373924 width=48)
-> Seq Scan on ccc12 (cost=0.00..818443.04 rows=53127004 width=48)
-> Seq Scan on ccc13 (cost=0.00..674104.80 rows=43757680 width=48)
-> Seq Scan on ccc14 (cost=0.00..786195.28 rows=51033728 width=48)
-> Seq Scan on ccc15 (cost=0.00..609709.04 rows=39577604 width=48)
-> Seq Scan on ccc16 (cost=0.00..633745.96 rows=41137896 width=48)
-> Seq Scan on ccc17 (cost=0.00..673951.76 rows=43747376 width=48)
-> Seq Scan on ccc18 (cost=0.00..802394.72 rows=52085272 width=48)
-> Seq Scan on ccc19 (cost=0.00..529621.20 rows=34378920 width=48)
-> Seq Scan on ccc20 (cost=0.00..642042.32 rows=41676432 width=48)
-> Seq Scan on ccc21 (cost=0.00..401251.50 rows=26046150 width=48)
-> Seq Scan on ccc22 (cost=0.00..673891.04 rows=43743804 width=48)
-> Seq Scan on ccc23 (cost=0.00..642033.76 rows=41675876 width=48)
(28 rows)
select * from (
select * from ccc0 union all
select * from ccc1 union all
select * from ccc2 union all
select * from ccc3 union all
select * from ccc4 union all
select * from ccc5 union all
select * from ccc6 union all
select * from ccc7 union all
select * from ccc8 union all
select * from ccc9 union all
select * from ccc10 union all
select * from ccc11 union all
select * from ccc12 union all
select * from ccc13 union all
select * from ccc14 union all
select * from ccc15 union all
select * from ccc16 union all
select * from ccc17 union all
select * from ccc18 union all
select * from ccc19 union all
select * from ccc20 union all
select * from ccc21 union all
select * from ccc22 union all
select * from ccc23
) as t
order by order_id limit 10;
order_id | cust_id | status
----------+---------+--------
1 | 649 |
2 | 226 |
3 | 816 |
4 | 844 |
5 | 827 |
6 | 456 |
7 | 810 |
8 | 365 |
9 | 49 |
10 | 75 |
(10 rows)
Time: 98991.924 ms (01:38.992)
https://github.com/digoal/blog/blob/master/201903/20190317_16.md#2%E5%BC%80%E5%90%AF%E5%B9%B6%E8%A1%8C%E8%80%97%E6%97%B6-56-%E7%A7%92 2、開啟并行,耗時: 5.6 秒。
postgres=# set max_parallel_workers_per_gather =24;
postgres=# set enable_parallel_append =on;
explain
/*+
Parallel(ccc0 24 hard)
Parallel(ccc1 0 hard)
Parallel(ccc2 0 hard)
Parallel(ccc3 0 hard)
Parallel(ccc4 0 hard)
Parallel(ccc5 0 hard)
Parallel(ccc6 0 hard)
Parallel(ccc7 0 hard)
Parallel(ccc8 0 hard)
Parallel(ccc9 0 hard)
Parallel(ccc10 0 hard)
Parallel(ccc11 0 hard)
Parallel(ccc12 0 hard)
Parallel(ccc13 0 hard)
Parallel(ccc14 0 hard)
Parallel(ccc15 0 hard)
Parallel(ccc16 0 hard)
Parallel(ccc17 0 hard)
Parallel(ccc18 0 hard)
Parallel(ccc19 0 hard)
Parallel(ccc20 0 hard)
Parallel(ccc21 0 hard)
Parallel(ccc22 0 hard)
Parallel(ccc23 0 hard)
*/
select * from (
select * from ccc0 union all
select * from ccc1 union all
select * from ccc2 union all
select * from ccc3 union all
select * from ccc4 union all
select * from ccc5 union all
select * from ccc6 union all
select * from ccc7 union all
select * from ccc8 union all
select * from ccc9 union all
select * from ccc10 union all
select * from ccc11 union all
select * from ccc12 union all
select * from ccc13 union all
select * from ccc14 union all
select * from ccc15 union all
select * from ccc16 union all
select * from ccc17 union all
select * from ccc18 union all
select * from ccc19 union all
select * from ccc20 union all
select * from ccc21 union all
select * from ccc22 union all
select * from ccc23
) as t
order by order_id limit 10;
DEBUG: pg_hint_plan:
used hint:
Parallel(ccc0 24 hard)
Parallel(ccc1 0 hard)
Parallel(ccc10 0 hard)
Parallel(ccc11 0 hard)
Parallel(ccc12 0 hard)
Parallel(ccc13 0 hard)
Parallel(ccc14 0 hard)
Parallel(ccc15 0 hard)
Parallel(ccc16 0 hard)
Parallel(ccc17 0 hard)
Parallel(ccc18 0 hard)
Parallel(ccc19 0 hard)
Parallel(ccc2 0 hard)
Parallel(ccc20 0 hard)
Parallel(ccc21 0 hard)
Parallel(ccc22 0 hard)
Parallel(ccc23 0 hard)
Parallel(ccc3 0 hard)
Parallel(ccc4 0 hard)
Parallel(ccc5 0 hard)
Parallel(ccc6 0 hard)
Parallel(ccc7 0 hard)
Parallel(ccc8 0 hard)
Parallel(ccc9 0 hard)
not used hint:
duplication hint:
error hint:
QUERY PLAN
--------------------------------------------------------------------------------------------
Limit (cost=1927178.78..1927179.04 rows=10 width=48)
-> Gather Merge (cost=1927178.78..27750629.70 rows=1000000128 width=48)
Workers Planned: 24
-> Sort (cost=1927178.20..2031344.88 rows=41666672 width=48)
Sort Key: ccc12.order_id
-> Parallel Append (cost=0.00..1026776.40 rows=41666672 width=48)
-> Seq Scan on ccc12 (cost=0.00..818443.04 rows=53127004 width=48)
-> Seq Scan on ccc18 (cost=0.00..802394.72 rows=52085272 width=48)
-> Seq Scan on ccc14 (cost=0.00..786195.28 rows=51033728 width=48)
-> Seq Scan on ccc2 (cost=0.00..722107.36 rows=46873636 width=48)
-> Seq Scan on ccc10 (cost=0.00..674124.76 rows=43758976 width=48)
-> Seq Scan on ccc13 (cost=0.00..674104.80 rows=43757680 width=48)
-> Seq Scan on ccc17 (cost=0.00..673951.76 rows=43747376 width=48)
-> Seq Scan on ccc22 (cost=0.00..673891.04 rows=43743804 width=48)
-> Seq Scan on ccc7 (cost=0.00..673876.80 rows=43742880 width=48)
-> Seq Scan on ccc4 (cost=0.00..657705.92 rows=42693192 width=48)
-> Seq Scan on ccc20 (cost=0.00..642042.32 rows=41676432 width=48)
-> Seq Scan on ccc23 (cost=0.00..642033.76 rows=41675876 width=48)
-> Seq Scan on ccc16 (cost=0.00..633745.96 rows=41137896 width=48)
-> Seq Scan on ccc6 (cost=0.00..625934.32 rows=40630732 width=48)
-> Seq Scan on ccc1 (cost=0.00..625842.88 rows=40624888 width=48)
-> Seq Scan on ccc9 (cost=0.00..609919.96 rows=39591296 width=48)
-> Seq Scan on ccc5 (cost=0.00..609836.16 rows=39585616 width=48)
-> Seq Scan on ccc15 (cost=0.00..609709.04 rows=39577604 width=48)
-> Seq Scan on ccc8 (cost=0.00..601729.04 rows=39059604 width=48)
-> Seq Scan on ccc3 (cost=0.00..545575.32 rows=35414332 width=48)
-> Seq Scan on ccc19 (cost=0.00..529621.20 rows=34378920 width=48)
-> Seq Scan on ccc11 (cost=0.00..529544.24 rows=34373924 width=48)
-> Seq Scan on ccc21 (cost=0.00..401251.50 rows=26046150 width=48)
-> Parallel Seq Scan on ccc0 (cost=0.00..0.00 rows=1735971 width=48)
(30 rows)
postgres=# /*+
Parallel(ccc0 24 hard)
Parallel(ccc1 0 hard)
Parallel(ccc2 0 hard)
Parallel(ccc3 0 hard)
Parallel(ccc4 0 hard)
Parallel(ccc5 0 hard)
Parallel(ccc6 0 hard)
Parallel(ccc7 0 hard)
Parallel(ccc8 0 hard)
Parallel(ccc9 0 hard)
Parallel(ccc10 0 hard)
Parallel(ccc11 0 hard)
Parallel(ccc12 0 hard)
Parallel(ccc13 0 hard)
Parallel(ccc14 0 hard)
Parallel(ccc15 0 hard)
Parallel(ccc16 0 hard)
Parallel(ccc17 0 hard)
Parallel(ccc18 0 hard)
Parallel(ccc19 0 hard)
Parallel(ccc20 0 hard)
Parallel(ccc21 0 hard)
Parallel(ccc22 0 hard)
Parallel(ccc23 0 hard)
*/
select * from (
select * from ccc0 union all
select * from ccc1 union all
select * from ccc2 union all
select * from ccc3 union all
select * from ccc4 union all
select * from ccc5 union all
select * from ccc6 union all
select * from ccc7 union all
select * from ccc8 union all
select * from ccc9 union all
select * from ccc10 union all
select * from ccc11 union all
select * from ccc12 union all
select * from ccc13 union all
select * from ccc14 union all
select * from ccc15 union all
select * from ccc16 union all
select * from ccc17 union all
select * from ccc18 union all
select * from ccc19 union all
select * from ccc20 union all
select * from ccc21 union all
select * from ccc22 union all
select * from ccc23
) as t
order by order_id limit 10;
DEBUG: pg_hint_plan:
used hint:
Parallel(ccc0 24 hard)
Parallel(ccc1 0 hard)
Parallel(ccc10 0 hard)
Parallel(ccc11 0 hard)
Parallel(ccc12 0 hard)
Parallel(ccc13 0 hard)
Parallel(ccc14 0 hard)
Parallel(ccc15 0 hard)
Parallel(ccc16 0 hard)
Parallel(ccc17 0 hard)
Parallel(ccc18 0 hard)
Parallel(ccc19 0 hard)
Parallel(ccc2 0 hard)
Parallel(ccc20 0 hard)
Parallel(ccc21 0 hard)
Parallel(ccc22 0 hard)
Parallel(ccc23 0 hard)
Parallel(ccc3 0 hard)
Parallel(ccc4 0 hard)
Parallel(ccc5 0 hard)
Parallel(ccc6 0 hard)
Parallel(ccc7 0 hard)
Parallel(ccc8 0 hard)
Parallel(ccc9 0 hard)
not used hint:
duplication hint:
error hint:
order_id | cust_id | status
----------+---------+--------
1 | 649 |
2 | 226 |
3 | 816 |
4 | 844 |
5 | 827 |
6 | 456 |
7 | 810 |
8 | 365 |
9 | 49 |
10 | 75 |
(10 rows)
Time: 5623.939 ms (00:05.624)
union all的parallel append沒有很好的并行度控制,如果要消除内部查詢的并行度,将所有分段并行起來,分區表的話使用hint可以解決。而union all的情況下,外部 alias無法強制或影響parallel append的并行度。
是以使用的并行度這樣來設定:
1、有且隻有一個内部表設定并行度
2、并行度可以設定為UNION ALL子句數一緻,不建議超過CPU核數的一半。
https://github.com/digoal/blog/blob/master/201903/20190317_16.md#%E5%85%B6%E4%BB%96%E7%9F%A5%E8%AF%86 其他知識
2、function, op 識别是否支援parallel
postgres=# select proparallel,proname from pg_proc;
proparallel | proname
-------------+----------------------------------------------
s | boolin
s | boolout
s | byteain
s | byteaout
3、subquery mapreduce unlogged table
對于一些情況,如果期望簡化優化器對非常非常複雜的SQL并行優化的負擔,可以自己将SQL拆成幾段,中間結果使用unlogged table儲存,類似mapreduce的思想。unlogged table同樣支援parallel 計算。
4、vacuum,垃圾回收并行。
5、dblink 異步調用并行
《PostgreSQL VOPS 向量計算 + DBLINK異步并行 - 單執行個體 10億 聚合計算跑進2秒》 《PostgreSQL 相似搜尋分布式架構設計與實踐 - dblink異步調用與多機并行(遠端 遊标+記錄 UDF執行個體)》 《PostgreSQL dblink異步調用實作 并行hash分片JOIN - 含資料交、并、差 提速案例 - 含dblink VS pg 11 parallel hash join VS pg 11 智能分區JOIN》暫時不允許并行的場景(将來PG會繼續擴大支援範圍):
1、修改行,鎖行,除了create table as , select into, create mview這幾個可以使用并行。
2、query 會被中斷時,例如cursor , loop in PL/SQL ,因為涉及到中間處理,是以不建議開啟并行。
3、paralle unsafe udf ,這種UDF不會并行
4、嵌套并行(udf (内部query并行)),外部調用這個UDF的SQL不會并行。(主要是防止large parallel workers )
5、SSI 隔離級别
https://github.com/digoal/blog/blob/master/201903/20190317_16.md#%E5%8F%82%E8%80%83 參考
https://www.postgresql.org/docs/11/parallel-plans.html 《PostgreSQL 11 preview - 并行計算 增強 彙總》 《PostgreSQL 10 自定義并行計算聚合函數的原理與實踐 - (含array_agg合并多個數組為單個一進制數組的例子)》https://github.com/digoal/blog/blob/master/201903/20190317_16.md#%E5%85%8D%E8%B4%B9%E9%A2%86%E5%8F%96%E9%98%BF%E9%87%8C%E4%BA%91rds-postgresql%E5%AE%9E%E4%BE%8Becs%E8%99%9A%E6%8B%9F%E6%9C%BA 免費領取阿裡雲RDS PostgreSQL執行個體、ECS虛拟機
