天天看點

kubeflow系列:基于國内阿裡雲鏡像解決kubeflow一鍵安裝

環境準備

kubeflow 為環境要求比較高,看官方要求:

at least one worker node with a minimum of:

  • 4 CPU
  • 50 GB storage
  • 12 GB memory

當然,沒達到也能安裝,不過在後面使用中會出現資源問題,因為這是整包安裝方案。

一個已經安裝好的kubernetes叢集,這裡我采用的是rancher安裝的叢集。

sudo docker run -d --restart=unless-stopped -p 80:80 -p 443:443 rancher/rancher           

這裡我選擇的是k8s的1.14版本,kubeflow和k8s之間的版本相容可以檢視

官網說明

,這裡我的kubeflow采用了0.6版本。

也可以直接建立阿裡雲kubernetes(記得需要選擇1.14版本):

如果直接想安裝可以直接跳到最後

kubeflow一鍵安裝部分

kustomize安裝

下載下傳kustomize檔案

官方的教程是用

kfclt

安裝的,kfclt 本質上是使用了 kustomize 來安裝,是以這裡我直接下載下傳 kustomize 檔案,通過修改鏡像的方式安裝。

官方kustomize檔案

下載下傳位址
git clone https://github.com/kubeflow/manifests
cd manifests
git checkout v0.6-branch
cd <target>/base
kubectl kustomize . | tee <output file>           

檔案比較多,可以用腳本分别導出,也可以用 kfctl 指令生成

kfctl generate all -V

:

kustomize/
├── ambassador.yaml
├── api-service.yaml
├── argo.yaml
├── centraldashboard.yaml
├── jupyter-web-app.yaml
├── katib.yaml
├── metacontroller.yaml
├── minio.yaml
├── mysql.yaml
├── notebook-controller.yaml
├── persistent-agent.yaml
├── pipelines-runner.yaml
├── pipelines-ui.yaml
├── pipelines-viewer.yaml
├── pytorch-operator.yaml
├── scheduledworkflow.yaml
├── tensorboard.yaml
└── tf-job-operator.yaml           

ambassador

微服務網關

argo

用于任務工作流編排

centraldashboard

kubeflow的dashboard看闆頁面

tf-job-operator

深度學習架構引擎,一個基于tensorflow建構的CRD,

資源類型kind為TFJob

katib

超參數伺服器

機器學習套件使用流程

修改kustomize檔案

修改kustomize鏡像

修改鏡像:

grc_image = [
"gcr.io/kubeflow-images-public/ingress-setup:latest",
"gcr.io/kubeflow-images-public/admission-webhook:v20190520-v0-139-gcee39dbc-dirty-0d8f4c",
"gcr.io/kubeflow-images-public/kubernetes-sigs/application:1.0-beta",
"gcr.io/kubeflow-images-public/centraldashboard:v20190823-v0.6.0-rc.0-69-gcb7dab59",
"gcr.io/kubeflow-images-public/jupyter-web-app:9419d4d",
"gcr.io/kubeflow-images-public/katib/v1alpha2/katib-controller:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/katib-manager:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/katib-manager-rest:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/suggestion-bayesianoptimization:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/suggestion-grid:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/suggestion-hyperband:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/suggestion-nasrl:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/suggestion-random:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/katib/v1alpha2/katib-ui:v0.6.0-rc.0",
"gcr.io/kubeflow-images-public/metadata:v0.1.8",
"gcr.io/kubeflow-images-public/metadata-frontend:v0.1.8",
"gcr.io/ml-pipeline/api-server:0.1.23",
"gcr.io/ml-pipeline/persistenceagent:0.1.23",
"gcr.io/ml-pipeline/scheduledworkflow:0.1.23",
"gcr.io/ml-pipeline/frontend:0.1.23",
"gcr.io/ml-pipeline/viewer-crd-controller:0.1.23",
"gcr.io/kubeflow-images-public/notebook-controller:v20190603-v0-175-geeca4530-e3b0c4",
"gcr.io/kubeflow-images-public/profile-controller:v20190619-v0-219-gbd3daa8c-dirty-1ced0e",
"gcr.io/kubeflow-images-public/kfam:v20190612-v0-170-ga06cdb79-dirty-a33ee4",
"gcr.io/kubeflow-images-public/pytorch-operator:v1.0.0-rc.0",
"gcr.io/google_containers/spartakus-amd64:v1.1.0",
"gcr.io/kubeflow-images-public/tf_operator:v0.6.0.rc0",
"gcr.io/arrikto/kubeflow/oidc-authservice:v0.2"
]

doc_image = [
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.ingress-setup:latest",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.admission-webhook:v20190520-v0-139-gcee39dbc-dirty-0d8f4c",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.kubernetes-sigs.application:1.0-beta",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.centraldashboard:v20190823-v0.6.0-rc.0-69-gcb7dab59",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.jupyter-web-app:9419d4d",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.katib-controller:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.katib-manager:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.katib-manager-rest:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.suggestion-bayesianoptimization:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.suggestion-grid:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.suggestion-hyperband:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.suggestion-nasrl:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.suggestion-random:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.katib.v1alpha2.katib-ui:v0.6.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.metadata:v0.1.8",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.metadata-frontend:v0.1.8",
"registry.cn-shenzhen.aliyuncs.com/shikanon/ml-pipeline.api-server:0.1.23",
"registry.cn-shenzhen.aliyuncs.com/shikanon/ml-pipeline.persistenceagent:0.1.23",
"registry.cn-shenzhen.aliyuncs.com/shikanon/ml-pipeline.scheduledworkflow:0.1.23",
"registry.cn-shenzhen.aliyuncs.com/shikanon/ml-pipeline.frontend:0.1.23",
"registry.cn-shenzhen.aliyuncs.com/shikanon/ml-pipeline.viewer-crd-controller:0.1.23",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.notebook-controller:v20190603-v0-175-geeca4530-e3b0c4",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.profile-controller:v20190619-v0-219-gbd3daa8c-dirty-1ced0e",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.kfam:v20190612-v0-170-ga06cdb79-dirty-a33ee4",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.pytorch-operator:v1.0.0-rc.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/google_containers.spartakus-amd64:v1.1.0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/kubeflow-images-public.tf_operator:v0.6.0.rc0",
"registry.cn-shenzhen.aliyuncs.com/shikanon/arrikto.kubeflow.oidc-authservice:v0.2"
]           

修改PVC,使用動态存儲

修改pvc存儲,采用

local-path-provisioner

動态配置設定PV

安裝

local-path-provisioner

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provisioner/master/deploy/local-path-storage.yaml           

如果想直接在kubeflow中使用,還需要将

StorageClass

改為預設存儲:

...
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: local-path
  annotations: #添加為預設StorageClass
    storageclass.beta.kubernetes.io/is-default-class: "true"
provisioner: rancher.io/local-path
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Delete
...           

完成後可以建一個PVC試試:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: local-path-pvc
  namespace: default
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 2Gi           

注:如果沒有設為預設storageclass需要在PVC加入

storageClassName: local-path

進行綁定

一鍵安裝

這裡我制作了一個一鍵啟動的國内鏡像版kubeflow項目:

https://github.com/shikanon/kubeflow-manifests