天天看點

Parallel 解析

本文選自 《Knative 雲原生應用開發指南》

更多雲原生技術資訊可關注 阿裡巴巴雲原生技術圈

資源定義

我們先看一下 Parallel 資源定義,典型的 Parallel Spec描述如下:

apiVersion: messaging.knative.dev/v1alpha1
kind: Parallel
metadata:
  name: me-odd-even-parallel
spec:
  channelTemplate:
    apiVersion: messaging.knative.dev/v1alpha1
    kind: InMemoryChannel
  cases:
    - filter:
        uri: "http://me-even-odd-switcher.default.svc.cluster.local/0"
      subscriber:
        ref:
          apiVersion: serving.knative.dev/v1alpha1
          kind: Service
          name: me-even-transformer
    - filter:
        uri: "http://me-even-odd-switcher.default.svc.cluster.local/1"
      subscriber:
        ref:
          apiVersion: serving.knative.dev/v1alpha1
          kind: Service
          name: me-odd-transformer
  reply:
    apiVersion: serving.knative.dev/v1alpha1
    kind: Service
    name: me-event-display           

主要包括如下 3 部分:

  • cases

    定義了一系列 filter 和 subscriber。對于每個條件分支:
    • 首先判斷

      filter

      , 當傳回事件時,調用 subscriber。filter和subscriber要求都是可通路的。
    • subscriber 執行傳回的事件會發生到 reply。如果 reply 為空,則發送到

      spec.reply

  • channelTemplate

    定義了目前 Parallel 中使用的Channel類型
  • reply

    定義了全局響應的目标函數。

邏輯架構如圖所示:

Parallel 解析

代碼實作

關鍵代碼實作如下:

  1. 首先為 Parallel 建立一個全局的 Channel。然後為每一個

    case

    建立一個過濾 Channel
  2. 在每個

    case

    中做了如下處理:
    • 為全局的 Channel建立一個 Subscription,訂閱條件為

      filter

      資訊,并且把 reply 響應發送給目前

      case

      中的過濾 Channel
    • 為過濾 Channel 建立一個 Subscription,将訂閱資訊發送給每個

      case

      中的

      Reply

      。如果目前

      case

      中沒有設定

      Reply

      ,則發送的全局

      Reply

func (r *Reconciler) reconcile(ctx context.Context, p *v1alpha1.Parallel) error {
    p.Status.InitializeConditions()

    // Reconciling parallel is pretty straightforward, it does the following things:
    // 1. Create a channel fronting the whole parallel and one filter channel per branch.
    // 2. For each of the Branches:
    //     2.1 create a Subscription to the fronting Channel, subscribe the filter and send reply to the filter Channel
    //     2.2 create a Subscription to the filter Channel, subcribe the subscriber and send reply to
    //         either the branch Reply. If not present, send reply to the global Reply. If not present, do not send reply.
    // 3. Rinse and repeat step #2 above for each branch in the list
    if p.DeletionTimestamp != nil {
        // Everything is cleaned up by the garbage collector.
        return nil
    }

    channelResourceInterface := r.DynamicClientSet.Resource(duckroot.KindToResource(p.Spec.ChannelTemplate.GetObjectKind().GroupVersionKind())).Namespace(p.Namespace)

    if channelResourceInterface == nil {
        msg := fmt.Sprintf("Unable to create dynamic client for: %+v", p.Spec.ChannelTemplate)
        logging.FromContext(ctx).Error(msg)
        return errors.New(msg)
    }

    // Tell tracker to reconcile this Parallel whenever my channels change.
    track := r.resourceTracker.TrackInNamespace(p)

    var ingressChannel *duckv1alpha1.Channelable
    channels := make([]*duckv1alpha1.Channelable, 0, len(p.Spec.Branches))
    for i := -1; i < len(p.Spec.Branches); i++ {
        var channelName string
        if i == -1 {
            channelName = resources.ParallelChannelName(p.Name)
        } else {
            channelName = resources.ParallelBranchChannelName(p.Name, i)
        }

        c, err := r.reconcileChannel(ctx, channelName, channelResourceInterface, p)
        if err != nil {
            logging.FromContext(ctx).Error(fmt.Sprintf("Failed to reconcile Channel Object: %s/%s", p.Namespace, channelName), zap.Error(err))
            return err

        }
        // Convert to Channel duck so that we can treat all Channels the same.
        channelable := &duckv1alpha1.Channelable{}
        err = duckapis.FromUnstructured(c, channelable)
        if err != nil {
            logging.FromContext(ctx).Error(fmt.Sprintf("Failed to convert to Channelable Object: %s/%s", p.Namespace, channelName), zap.Error(err))
            return err

        }
        // Track channels and enqueue parallel when they change.
        if err = track(utils.ObjectRef(channelable, channelable.GroupVersionKind())); err != nil {
            logging.FromContext(ctx).Error("Unable to track changes to Channel", zap.Error(err))
            return err
        }
        logging.FromContext(ctx).Info(fmt.Sprintf("Reconciled Channel Object: %s/%s %+v", p.Namespace, channelName, c))

        if i == -1 {
            ingressChannel = channelable
        } else {
            channels = append(channels, channelable)
        }
    }
    p.Status.PropagateChannelStatuses(ingressChannel, channels)

    filterSubs := make([]*v1alpha1.Subscription, 0, len(p.Spec.Branches))
    subs := make([]*v1alpha1.Subscription, 0, len(p.Spec.Branches))
    for i := 0; i < len(p.Spec.Branches); i++ {
        filterSub, sub, err := r.reconcileBranch(ctx, i, p)
        if err != nil {
            return fmt.Errorf("Failed to reconcile Subscription Objects for branch: %d : %s", i, err)
        }
        subs = append(subs, sub)
        filterSubs = append(filterSubs, filterSub)
        logging.FromContext(ctx).Debug(fmt.Sprintf("Reconciled Subscription Objects for branch: %d: %+v, %+v", i, filterSub, sub))
    }
    p.Status.PropagateSubscriptionStatuses(filterSubs, subs)

    return nil
}           

示例示範

接下來讓我們通過一個執行個體具體了解一下 Parallel 。通過CronJobSource産生事件發送給

me-odd-even-parallel

Parallel,  Parallel 會将事件發送給每個

case

, Case中通過 filter 不同的參數通路

me-even-odd-switcher

服務,  

me-even-odd-switcher

服務會根據目前事件的建立時間随機計算0或1的值,如果計算值和請求參數值相比對,則傳回事件,否則不傳回事件。

  • http://me-even-odd-switcher.default.svc.cluster.local/0

    比對成功,傳回事件到

    me-even-transformer

    服務進行處理
  • http://me-even-odd-switcher.default.svc.cluster.local/1

    odd-transformer

不管哪個

case

處理完之後,将最終的事件發送給

me-event-display

服務進行事件顯示。

具體操作步驟如下:

建立 Knative Service

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
  name: me-even-odd-switcher
spec:
  template:
    spec:
      containers:
      - image: villardl/switcher-nodejs:0.1
        env:
        - name: EXPRESSION
          value: Math.round(Date.parse(event.time) / 60000) % 2
        - name: CASES
          value: '[0, 1]'
---
apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
  name: even-transformer
spec:
  template:
    spec:
      containers:
      - image: villardl/transformer-nodejs:0.1
        env:
        - name: TRANSFORMER
          value: |
            ({"message": "we are even!"})

---
apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
  name: odd-transformer
spec:
  template:
    spec:
      containers:
      - image: villardl/transformer-nodejs:0.1
        env:
        - name: TRANSFORMER
          value: |
            ({"message": "this is odd!"})
.           

建立 Parallel

apiVersion: messaging.knative.dev/v1alpha1
kind: Parallel
metadata:
  name: me-odd-even-parallel
spec:
  channelTemplate:
    apiVersion: messaging.knative.dev/v1alpha1
    kind: InMemoryChannel
  cases:
    - filter:
        uri: "http://me-even-odd-switcher.default.svc.cluster.local/0"
      subscriber:
        ref:
          apiVersion: serving.knative.dev/v1alpha1
          kind: Service
          name: me-even-transformer
    - filter:
        uri: "http://me-even-odd-switcher.default.svc.cluster.local/1"
      subscriber:
        ref:
          apiVersion: serving.knative.dev/v1alpha1
          kind: Service
          name: me-odd-transformer
  reply:
    apiVersion: serving.knative.dev/v1alpha1
    kind: Service
    name: me-event-display           

建立 CronJobSource 資料源

apiVersion: sources.eventing.knative.dev/v1alpha1
kind: CronJobSource
metadata:
  name: me-cronjob-source
spec:
  schedule: "*/1 * * * *"
  data: '{"message": "Even or odd?"}'
  sink:
    apiVersion: messaging.knative.dev/v1alpha1
    kind: Parallel
    name: me-odd-even-parallel           

檢視結果

運作之後可以看到類似如下結果:

kubectl logs -l serving.knative.dev/service=me-event-display --tail=30 -c user-container

️  cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 0.3
  type: dev.knative.cronjob.event
  source: /apis/v1/namespaces/default/cronjobsources/me-cronjob-source
  id: 48eea348-8cfd-4aba-9ead-cb024ce16a48
  time: 2019-07-31T20:56:00.000477587Z
  datacontenttype: application/json; charset=utf-8
Extensions,
  knativehistory: me-odd-even-parallel-kn-parallel-kn-channel.default.svc.cluster.local, me-odd-even-parallel-kn-parallel-0-kn-channel.default.svc.cluster.local
Data,
  {
    "message": "we are even!"
  }
️  cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 0.3
  type: dev.knative.cronjob.event
  source: /apis/v1/namespaces/default/cronjobsources/me-cronjob-source
  id: 42717dcf-b194-4b36-a094-3ea20e565ad5
  time: 2019-07-31T20:57:00.000312243Z
  datacontenttype: application/json; charset=utf-8
Extensions,
  knativehistory: me-odd-even-parallel-kn-parallel-1-kn-channel.default.svc.cluster.local, me-odd-even-parallel-kn-parallel-kn-channel.default.svc.cluster.local
Data,
  {
    "message": "this is odd!"
  }           

結論

通過上面的介紹,相信大家對 Parallel 如何進行事件條件處理有了更多的了解,對于并行處理事件的場景下,不妨試試 Parallel。

阿裡巴巴雲原生 關注微服務、Serverless、容器、Service Mesh 等技術領域、聚焦雲原生流行技術趨勢、雲原生大規模的落地實踐,做最懂雲原生開發者的技術圈。”