在這個教程,你将學習如何通過遷移學習訓練神經網絡。你可以在 cs231n notes 了解更多關于遷移學習的内容。
引用這些筆記 實踐中,很少有人從頭開始訓練整個卷積網絡,因為擁有足夠大小的資料集是比較少見的。替代的是, 通常會從一個大的資料集(例如 ImageNet, 包含120萬的圖檔和1000個分類)預訓練一個卷積網絡, 然後将這個卷積網絡作為初始化的網絡, 或者是感興趣任務的固定的特征提取器。
如下是兩種主要的遷移學習的使用場景:
- 微調卷積網絡: 取代随機初始化網絡, 我們從一個預訓練的網絡初始化, 比如從 imagenet 1000 資料集預訓練的網絡. 其餘的訓練就像往常一樣.
- 卷積網絡作為固定的特征提取器: 在這裡, 我們固定網絡中的所有權重, 最後的全連接配接層除外. 最後的全連接配接層被新的随機權重替換, 并且, 隻有這一層是被訓練的.
# License: BSD
# Author: Sasank Chilamkurthy
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
plt.ion() # interactive mode
一、加載資料
我們将使用torchvision和torch.utils.data包來加載資料。
今天我們要解決的問題是訓練一個模型來區分 ants (螞蟻) 和 bees (蜜蜂)。
用于訓練的 ants 和 bees 圖檔各120張。每一類用于驗證的圖檔各75張。通常, 如果從頭開始訓練, 這個非常小的資料集不足以進行泛化。但是, 因為我們使用遷移學習, 應該可以取得很好的泛化效果。
這個資料集是一個非常小的 imagenet 子集。
### 下載下傳圖檔資料
import os
import os.path
import errno
url ='https://download.pytorch.org/tutorial/hymenoptera_data.zip'
filename='hymenoptera_data.zip'
def download(root):
'''
下載下傳資料用于訓練和測試的ants和bees的圖檔壓縮包。
使用zipfile包減壓壓縮包。
'''
root = os.path.expanduser(root)
import zipfile
#下載下傳圖檔壓縮包到指定路徑
download_url(url,root,filename)
#獲得目前路徑
cwd = os.getcwd()
path = os.path.join(root, filename)
tar = zipfile.ZipFile(path, "r")
#解壓檔案
tar.extractall(root)
tar.close()
#切換到目前工作路徑
os.chdir(cwd)
def download_url(url, root, filename):
from six.moves import urllib
root = os.path.expanduser(root)
fpath = os.path.join(root, filename)
try:
os.makedirs(root)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# downloads file
if os.path.isfile(fpath) :
print('使用已下載下傳檔案: ' + fpath)
else:
try:
print('下載下傳 ' + url + ' 到 ' + fpath)
urllib.request.urlretrieve(url, fpath)
except:
if url[:5] == 'https':
url = url.replace('https:', 'http:')
print('Failed download. Trying https -> http instead.'
' Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(url, fpath)
download('./root')
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = './root/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
二、訓練模型
現在, 讓我們寫一個通用的函數來訓練模型. 這裡, 我們将會舉例說明:
- 排程學習率
- 儲存最佳的學習模型
下面函數中, scheduler 參數是torch.optim.lr_scheduler 中的 LR scheduler 對象。
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
1.顯示部分圖像
讓我們顯示一些訓練中的圖檔, 以便了解資料增強。
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
2.顯示模型的預測結果
寫一個處理少量圖檔, 并顯示預測結果的通用函數。
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
三、調整卷積網絡
加載一個預訓練的網絡, 并重置最後一個全連接配接層。
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
訓練和評估
CPU模式下将花費20—30分鐘。在GPU環境下,花費時間少于1分鐘(官方給的資料,我沒有環境測試)。
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25

visualize_model(model_ft)
四、卷積神經網絡作為固定特征提取器
ConvNet as fixed feature extractor
這裡, 我們固定網絡中除最後一層外的所有權重. 為了固定這些參數, 我們需要設定 requires_grad == False , 然後在 backward() 中就不會計算梯度.
你可以在這裡(
http://t.cn/EafTQ8T)閱讀更多相關資訊.
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
在使用 CPU 的情況下, 和前一個方案相比, 這将花費的時間是它的一半。期望中, 網絡的大部分是不需要計算梯度的. 前向傳遞依然要計算梯度。
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
visualize_model(model_conv)
plt.ioff()
plt.show()
Type Markdown and LaTeX: α²