目錄
- Outline
- Auto-Encoder
- 建立編解碼器
- 訓練
Outline
- Auto-Encoder
- Variational Auto-Encoders
建立編解碼器
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
def save_images(imgs, name):
new_im = Image.new('L', (280, 280))
index = 0
for i in range(0, 280, 28):
for j in range(0, 280, 28):
im = imgs[index]
im = Image.fromarray(im, mode='L')
new_im.paste(im, (i, j))
index += 1
new_im.save(name)
h_dim = 20 # 784降維20維
batchsz = 512
lr = 1e-3
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(
np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
class AE(keras.Model):
def __init__(self):
super(AE, self).__init__()
# Encoders
self.encoder = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(h_dim)
])
# Decoders
self.decoder = Sequential([
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(784)
])
def call(self, inputs, training=None):
# [b,784] ==> [b,19]
h = self.encoder(inputs)
# [b,10] ==> [b,784]
x_hat = self.decoder(h)
return x_hat
model = AE()
model.build(input_shape=(None, 784)) # tensorflow盡量用元組
model.summary()
(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
Model: "ae"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
sequential (Sequential) multiple 236436
_________________________________________________________________
sequential_1 (Sequential) multiple 237200
=================================================================
Total params: 473,636
Trainable params: 473,636
Non-trainable params: 0
_________________________________________________________________
訓練
optimizer = tf.optimizers.Adam(lr=lr)
for epoch in range(10):
for step, x in enumerate(train_db):
# [b,28,28]==>[b,784]
x = tf.reshape(x, [-1, 784])
with tf.GradientTape() as tape:
x_rec_logits = model(x)
rec_loss = tf.losses.binary_crossentropy(x,
x_rec_logits,
from_logits=True)
rec_loss = tf.reduce_min(rec_loss)
grads = tape.gradient(rec_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 == 0:
print(epoch, step, float(rec_loss))
# evaluation
x = next(iter(test_db))
logits = model(tf.reshape(x, [-1, 784]))
x_hat = tf.sigmoid(logits)
# [b,784]==>[b,28,28]
x_hat = tf.reshape(x_hat, [-1, 28, 28])
# [b,28,28] ==> [2b,28,28]
x_concat = tf.concat([x, x_hat], axis=0)
# x_concat = x # 原始圖檔
x_concat = x_hat
x_concat = x_concat.numpy() * 255.
x_concat = x_concat.astype(np.uint8) # 儲存為整型
if not os.path.exists('ae_images'):
os.mkdir('ae_images')
save_images(x_concat, 'ae_images/rec_epoch_%d.png' % epoch)
0 0 0.09717604517936707
0 100 0.12493347376585007
1 0 0.09747321903705597
1 100 0.12291513383388519
2 0 0.10048121958971024
2 100 0.12292417883872986
3 0 0.10093794018030167
3 100 0.12260882556438446
4 0 0.10006923228502274
4 100 0.12275046110153198
5 0 0.0993042066693306
5 100 0.12257824838161469
6 0 0.0967678651213646
6 100 0.12443818897008896
7 0 0.0965462476015091
7 100 0.12179268896579742
8 0 0.09197664260864258
8 100 0.12110235542058945
9 0 0.0913471132516861
9 100 0.12342415750026703